Standard Practice for Determination of Heat Gain or Loss and the Surface Temperatures of Insulated Pipe and Equipment Systems by the Use of a Computer Program¹

This standard is issued under the fixed designation C 680; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

 ϵ^1 Note—Safety Caveat and Keywords were added editorially in April 1995.

1. Scope

1.1 The computer programs included in this practice provide a calculational procedure for predicting the heat loss or gain and surface temperatures of insulated pipe or equipment systems. This procedure is based upon an assumption of a uniform insulation system structure, that is, a straight run of pipe or flat wall section insulated with a uniform density insulation. Questions of applicability to real systems should be resolved by qualified personnel familiar with insulation systems design and analysis. In addition to applicability, calculational accuracy is also limited by the range and quality of the physical property data for the insulation materials and systems.

1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

C 168 Terminology Relating to Thermal Insulating Materials²

- C 177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus²
- C 335 Test Method for Steady-State Heat Transfer Properties of Horizontal Pipe Insulation²
- C 518 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus²
- C 585 Practice for Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System)²
- E 691 Practice for Conducting an Interlaboratory Study to

Determine the Precision of a Test Method³

- 2.2 ANSI Standards:
- X3.5 Flow Chart Symbols and Their Usage in Information Processing⁴
- X3.9 Standard for Fortran Programming Language⁴

3. Terminology

3.1 *Definitions*—For definitions of terms used in this practice, refer to Terminology C 168.

3.2 *Symbols:Symbols*—The following symbols are used in the development of the equations for this practice. Other symbols will be introduced and defined in the detailed description of the development.

where:

- h = surface coefficient, Btu/(h·ft²·°F) (W/(m²·K))
- k = thermal conductivity, Btu·in./(h·ft²·°F)(W/(m·K))
- k_a = constant equivalent thermal conductivity introduced by the Kirchhoff transformation, Btu·in./(h·ft ²·F) (W/(m·K))
- $Q_{\rm t}$ = total time rate of heat flow, Btu/h (W)
- Q_1 = time rate of heat flow per unit length, Btu/h ft (W/m)
- q = time rate of heat flow per unit area, Btu/(h·ft ²) (W/m²)
- R = thermal resistance, (°F·h·ft²)/Btu (K·m²/W)
- r = radius, in. (m)
- $t = \text{local temperature, } ^{\circ}F(K)$
- t_i = temperature of inner surface of the insulation, °F (K)
- t_a = temperature of ambient fluid and surroundings, °F (K)
- x = distance in direction of heat flow (thickness), in. (m)

4. Summary of Practice

4.1 The procedures used in this practice are based upon standard steady-state heat transfer theory as outlined in textbooks and handbooks. The computer program combines the functions of data input, analysis, and data output into an

Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.

¹ This practice is under the jurisdiction of ASTM Committee C-16 on Thermal Insulation and is the direct responsibility of Subcommittee C16.30 on Thermal Measurements.

Current edition approved Jan. 27, 1989. Published May 1989. Originally published as C 680 - 71. Last previous edition C $680 - 82^{\text{el}}$.

² Annual Book of ASTM Standards, Vol 04.06.

³ Annual Book of ASTM Standards, Vol 14.02.

⁴ Available from American National Standards Institute, 11 W. 42nd St., 13th Floor, New York, NY 10036.

easy-to-use, interactive computer program. By making the program interactive, little operator training is needed to perform fast, accurate calculations.

4.2 The operation of the computer program follows the procedure listed below:

4.2.1 *Data Input*—The computer requests and the operator inserts information that describes the system and operating environment. The data include:

4.2.1.1 Analysis Identification.

4.2.1.2 Date.

4.2.1.3 Ambient Temperature.

4.2.1.4 Surface coefficient or ambient wind speed, insulation system surface emittance, and orientation.

4.2.1.5 *System Description*—Layer number, material, and thicknesses.

4.2.2 Analysis—Once input data is entered, the program calculates the surface coefficients (if not entered directly) and the layer resistances, then uses that data to calculate the heat losses and surface temperatures. The program continues to repeat the analysis using the previous temperature data to update the estimates of layer resistance until the temperatures at each surface repeat with a specified tolerance.

4.2.3 Once convergence of the temperatures is reached, the program prints a table giving the input data, the resulting heat flows, and the inner surface and external surface temperatures.

5. Significance and Use

5.1 Manufacturers of thermal insulations express the performance of their products in charts and tables showing heat gain or loss per lineal foot of pipe or square foot of equipment surface. These data are presented for typical operating temperatures, pipe sizes, and surface orientations (facing up, down, or horizontal) for several insulation thicknesses. The insulation surface temperature is often shown for each condition, to provide the user with information on personnel protection or surface condensation. Additional information on effects of wind velocity, jacket emittance, and ambient conditions may also be required to properly select an insulation system. Due to the infinite combinations of size, temperature, humidity, thickness, jacket properties, surface emittance, orientation, ambient conditions, etc., it is not practical to publish data for each possible case.

5.2 Users of thermal insulation, faced with the problem of designing large systems of insulated piping and equipment, encounter substantial engineering costs to obtain the required thermal information. This cost can be substantially reduced by both the use of accurate engineering data tables, or by the use of available computer analysis tools, or both.

5.3 The use of analysis procedures described in this practice can also apply to existing systems. For example, C 680 is referenced for use with Procedures C 1057 and C 1055 for burn hazard evaluation for heated surfaces. Infrared inspection or in situ heat flux measurements are often used in conjunction with C 680 to evaluate insulation system performance and durability on operating systems. This type analysis is often made prior to system upgrades or replacements.

5.4 The calculation of heat loss or gain and surface temperature of an insulated system is mathematically complex and because of the iterative nature of the method, is best handled by computers.

5.5 The thermal conductivity of most insulating materials changes with mean temperature. Since most thermal insulating materials rely on enclosed air spaces for their effectiveness, this change is generally continuous and can be mathematically approximated. In the cryogenic region where one or more components of the air condense, a more detailed mathematical treatment may be required. For those insulations that depend on high molecular weight, that is, fluorinated hydrocarbons, for their insulating effectiveness, gas condensation will occur at higher temperatures and produce sharp changes of conductivity in the moderate temperature range. For this reason, it is necessary to consider the temperature conductivity dependence of an insulation system when calculating thermal performance. The use of a single value thermal conductivity at the mean temperature will provide less accurate predictions, especially when bridging regions where strong temperature dependence occurs.

5.6 The use of this practice by both manufacturers and users of thermal insulations will provide standardized engineering data of sufficient accuracy for predicting thermal insulation performance.

5.7 Computers are now readily available to most producers and consumers of thermal insulation to permit the use of this practice.

5.8 Two separate computer programs are described in this practice as a guide for calculation of the heat loss or gain, and surface temperatures, of insulated pipe and equipment systems. The range of application of these programs and the reliability of the output is a primary function of the range and quality of the input data. Both programs are intended for use with an "interactive" terminal. With this system, intermediate output guides the user to make programming adjustments to the input parameters as necessary. The computer controls the terminal interactively with program-generated instructions and questions, prompting user response. This facilitates problem solution and increases the probability of successful computer runs.

5.8.1 Program C 608E is designed for an interactive solution of equipment heat transfer problems.

5.8.2 Program C 608P is designed for interactive solution of piping-system problems. The subroutine SELECT has been written to provide input for the nominal iron pipe sizes as shown in Practice C 585, Tables 1 and 3. The use of this program for tubing-systems problems is possible by rewriting subroutine SELECT such that the tabular data contain the appropriate data for tubing rather than piping systems (Practice C 585, Tables 2 and 4).

5.8.3 Combinations of the two programs are possible by using an initial selector program that would select the option being used and elimination of one of the k curve and surface coefficient subroutines that are identical in each program.

5.8.4 These programs are designed to obtain results identical to the previous batch program of the 1971 edition of this practice. The only major changes are the use of an interactive terminal and the addition of a subroutine for calculating surface coefficient.

5.9 The user of this practice may wish to modify the data

input and report sections of the computer program presented here to fit individual needs. Also, additional calculations may be desired to include other data such as system costs or economic thickness. No conflict with this method in making these modifications exists, provided that the user has demonstrated compatibility. Compatibility is demonstrated using a series of test cases covering the range for which the new method is to be used. For those cases, results for the heat flow and surface temperatures must be identical, within the resolution of the method, to those obtained using the method described herein.

5.10 This practice has been prepared to provide input and output data that conforms to the system of units commonly used by United States industry. Although modification of the input/output routines would provide an SI equivalent of the heat-flow results, no such "metric" equivalent is available for the other portions of the program. To date, there is no accepted metric dimensions system for pipe and insulation systems for cyclindrical shapes. The dimensions in use in Europe are the SI dimension equivalents of the American sizes, and in addition have different designations in each country. Therefore, due to the complexity of providing a standardized equivalent of this procedure, no SI version of this practice has been prepared. At the time in which an international standardization of piping and insulation sizing occurs, this practice can be rewritten to meet those needs. This system has also been demonstrated to calculate the heat loss for bare systems by the inclusion of the pipe/equipment wall thermal resistance into the equation system. This modification, although possible, is beyond the scope of this practice.

6. Method of Calculation

6.1 Approach:

6.1.1 This calculation of heat gain or loss, and surface temperature, requires (1) that the thermal insulation be homogeneous as outlined by the definition of thermal conductivity in Terminology C 168; (2) that the pipe size and equipment operating temperature be known; (3) that the insulation thickness be known; (4) that the surface coefficient of the system be known, or sufficient information be available to estimate it as described in 7.4; and (5) that the relation between thermal conductivity and mean temperature for the insulation be known in detail as described in 7.3.

6.1.2 The solution is a computer procedure calling for (1) estimation of the system temperature distribution, (2) calculation of the thermal resistances throughout the system based on that distribution, and (3) then reestimation of the temperature distribution from the calculated resistances. The iteration continues until the calculated distribution is in agreement with the estimated distribution. The layer thermal resistance is calculated each time with the equivalent thermal conductivity being obtained by integration of the conductivity curve for the layer being considered. By this technique, the thermal conductivity variation of any insulation or multiple-layer combination of insulations can be taken into consideration when calculating the heat flow.

6.2 *Development of Equations*—The development of the mathematical equations centers on heat flow through a homogeneous solid insulation exhibiting a thermal conductivity that

is dependent on temperature. Existing methods of thermal conductivity measurement account for the thermal conduction, convection, and radiation occurring within the insulation. After the basic equations are developed, they are extended to composite (multiple-layer) cases and supplemented with provision for heat flow from the outer surface by convection or radiation, or both.

6.3 Equations—Case 1, Slab Insulation:

6.3.1 Case 1 is a slab of insulation shown in Fig. 1 having width *W*, height *H*, and thickness *T*. It is assumed that heat flow occurs only in the thickness of *x* direction. It is also assumed that the temperature t_1 of the surface at x_1 is the same as the equipment surface temperature and the time rate of heat flow per unit area entering the surface at x_1 is designated q_1 . The time rate of heat flow per unit area leaving the surfaces at x_2 is q_2 .

6.3.1.1 For the assumption of steady-state (timeindependent) condition, the law of conservation of energy dictates that for any layer the time rate of heat flow in must equal the time rate of heat flow out, i.e., there is no net storage of energy inside the layer.

6.3.1.2 Taking thin sections of thickness Δx , energy balances may be written for these sections as follows: *Case 1:*

$$WHq) \mid_{x} - (WHq) \mid_{x + \Delta x} = 0 \tag{1}$$

NOTE 1—The vertical line with a subscript indicates the point at which the previous parameter is evaluated. For example: $q|_{x + \Delta x}$ reads the time rate of heat flow per unit area, evaluated at $x + \Delta x$.

6.3.1.3 After dividing Eq 1 by $-WH\Delta x$ and taking the limit as Δx approaches zero, the differential equation for heat transfer is obtained for the one-dimensional case:

$$(d/dx)q = 0 \tag{2}$$

6.3.1.4 Integrating Eq 2 and imposing the condition of heat flow stability on the result yields the following:

$$q = q_1 = q_2 \tag{3}$$

Case 1

FIG. 1 Single Layer Slab System

6.3.1.5 When the thermal conductivity, k, is a function of local temperature, t, the Fourier law must be substituted in Eq 2. Fourier's Law for one-dimensional heat transfer can be stated mathematically as follows:

$$q = -k(\mathrm{d}t/\mathrm{d}x) \tag{4}$$

therefore,

$$(d/dx)q = (d/dx)(-k(dt/dx)) = 0$$
 (5)

6.3.1.6 To retain generality, the functionality of k with t is not defined at this point, therefore, Eq 5 cannot be integrated directly. The Kirchhoff transformation $(1)^5$ allows integration by introducing an auxiliary variable u and a constant k_a defined by the differential equation as follows:

$$k_a(\mathrm{d}u/\mathrm{d}x) = k(\mathrm{d}t/\mathrm{d}x) \tag{6}$$

This equation must be satisfied by the following boundary conditions:

$$u = t_1 \text{ at } x = x_1$$
$$u = t_2 \text{ at } x = x_2$$

6.3.1.7 Rederiving Eq 4 in terms of Eq 6, integrating, and imposing the boundary conditions for the transformation yields the following:

$$q_{1} = \frac{t_{1} - t_{2}}{\left[\frac{x_{1} - x_{2}}{k_{a}}\right]}$$
(7)

6.3.1.8 Eq 7 is in a familiar form of the conductive heat transfer equation used when thermal conductivity is assumed constant with local temperatures. To evaluate the equivalent thermal conductivity, Eq 6 is solved for k_a . Separating variables in either equation and integrating through the boundary conditions, the following general relation is obtained:

$$k_{\rm a} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} k \, \mathrm{d}t \tag{8}$$

Evaluation of the integral in Eq 8 can be handled analytically where k is a simple function, or by numerical methods where k cannot be integrated. Particular solutions of Eq 8 are discussed in 6.5.

6.3.2 The equations for heat flow through a single-layer insulation can now be extended to the multiple layer or composite insulation case. Consider Fig. 2 as a multiple-layer extension of the simple case. The figure shows the composite system with insulations having different thermal conductivities.

6.3.2.1 Equations can be written for each additional layer analogous to Eq 7. With the entire system at stability and assuming no temperature drop across layer interfaces, the equation is written as follows:

$$q_{i+1} = \frac{t_i - t_{i+1}}{\left(\frac{x_i - x_{i+1}}{k_{a,i,i+1}}\right)}$$
(9)

Note 2—The generalized index, i, denotes any interface within the system.

6.3.2.2 It is useful at this point to introduce the concept of thermal resistance, that is, the heat flow per unit area given

simply by a temperature difference divided by the corresponding thermal resistance. The heat flow per unit area at the outer surface, x_n , is calculated as follows:

 $q_n = (t_i - t_{i+1})/R_{i,i+1}$

where:

$$R_{i,i+1} = (x_{i+1} - x_i)/k_{a,i,i+1}$$
(11)

(10)

6.3.3 Characterization of the heat flow from the systems can be completed by developing an expression for the rate of heat flow per unit area at the outer solid surfaces. For this purpose, the following definition of the surface coefficient is employed:

$$h = q_n / (t_n - t_a) \tag{12}$$

or

$$q_n = \frac{(t_n - t_a)}{(1/h)}$$
(13)

Because of the similarity between Eq 10 and Eq 13, Eq 13 can be rewritten as follows:

$$q_n = (t_n - t_a)/R_s \tag{14}$$

where:

where:

$$R_{\rm s} = (1/h) \tag{15}$$

6.3.4 The surface coefficient, h, is a complex function of the properties of the ambient fluid, surface geometry, the temperatures of the system, the surface finish, and motion of the ambient fluid. Equations used by this practice for estimating the surface coefficient are discussed in 7.4.

6.3.4.1 Summing the series of equations from 6.3.2 including equations from 6.3.3 yields the following expression for the heat flow through the entire composite system:

$$q_n = (t_1 - t_a) / R_t$$
 (16)

R = R + R

$$R_{\rm t} = R_{1,2} + R_{2,3}R_{3,4} + \dots + R_{n-1,n} + R_{\rm s}$$

6.3.4.2 Setting the heat flow per unit area through each element, q_i , equal to the heat flow through the entire system, q_n ,

⁵ The boldface numbers in parentheses refer to the list of references at the end of this practice.

shows that the ratio of the temperature across the element to the temperature difference across the entire system is proportional to the ratio of the thermal resistance of the element to the total thermal resistance of the system or in general terms.

$$\frac{(t_i - t_{i+1})}{(t_1 - t_a)} = (R_{i,i+1}/R_t)$$
(17)

Eq 17 provides the means of solving for the temperature distribution. Since the resistance of each element depends on the temperature of the element, the solution can be found only by iteration methods.

6.4 Equations—Case 2, Cylindrical Sections:

6.4.1 For Case 2, Figs. 3 and 4, the analysis used is similar to that described in 6.3, but with the replacement of the variable x by the cyclindrical coordinate, r. The following generalized equation is used to calculate the conductive heat flow through a layer of a cylinder wall.

$$q_{i+1} = \frac{t_i - t_{i+1}}{\left(\frac{r_{i+1} \ln (r_{i+1}/r_i)}{k_{a_{i,i}+1}}\right)}$$
(18)

Note the similarity of Eq 9 and Eq 18 and that the solution of the transformation equation for the radical heat flow case is identical to that of the slab case (see Eq 8).

6.4.2 As in Case 1, calculations for slabs, simplification of the equations for the heat loss may be accomplished by defining the thermal resistance. For pipe insulations, the heat flow per unit area is a function of radius, so thermal resistance must be defined in terms of the heat flow at a particular radius. The outer radius, r_n , of the insulation system is chosen for this purpose. The heat flow per unit area for cylinders, calculated at the outer surface, r_n , is:

$$q_n = (t_i - t_{i+1})/R_{i,i+1} \tag{19}$$

where:

$$R_{i,i+1} = \frac{r_n \ln (r_{i+1}/r_i)}{k_{a,i,i+1}}$$
(20)

6.4.3 The concept of surface resistance used in an analysis similar to 6.3.3 and 6.3.4 permits introduction of the definition of the heat transfer as a function of the overall thermal resistance for the cylindrical case as follows:

Case 2

FIG. 3 Single Layer Annulus System

FIG. 4 Composite System Annulus

q

$$t_n = (t_1 - t_a)/R_t$$
 (21)

where:

$$R_t = R_{1,2} + R_{2,3} + R_{3,4} + \dots + R_{n-1,n} + R_s$$

NOTE 3—In some situations where comparisons of the insulation system performance is to be made, basing the areal heat loss on the inside surface area, which is fixed by the pipe dimensions, or on the heat loss per unit length, is beneficial. The heat loss per unit area of the inside surface is calculated from the heat loss per unit area of the outside surface by multiplying by the ratio of the outside radius to the inside radius. For calculation of the heat loss per linear foot from the heat loss per outside area, simply multiply by the outside area per foot or $2\pi r_o$. For Case 2, the annulus, results are normally expressed as the time rate of heat flow per unit length, Q_1 , which is obtained as follows:

$$Q_1 = 2\pi r_n q_n = 2\pi r_n (t_1 - t_2)/R_t$$
(22)

6.5 Calculation of Effective Conductivity:

6.5.1 In Eq 11-22 it is necessary to evaluate k_a as a function of temperature for each of the conductive elements. The generalized solution in Eq 8 is as follows:

$$k_{a, i, i+1} = \frac{1}{(t_{i+1} - t_i)} \int_{t_i}^{t_{i+1}} k dt$$

6.5.2 When k may be described in terms of a simple function of t, an analytically exact solution for k_a can be obtained. The following functional types will be considered in the examples (see 9.1-9.4).

6.5.2.1 If k is linear with t, k = a + bt and

$$k_{a} = \frac{1}{(t_{i+1} - t_{i})} \int_{t_{i}}^{t_{i-1}} (a + bt) dt = a + b \left(\frac{t_{i+1} + t_{i}}{2}\right)$$
(23)

where a and b are constants. 6.5.2.2 If

 $k = e^{a+bt}$

then:

$$k_a = \frac{1}{(t_{i+1} - t_i)} \int_{t_i}^{t_{i+1}} e^{a+bt} dt$$

and evaluating the integral yields:

$$k_{a} = \left[\frac{1}{(t_{i+1} - t_{i})}\right] \left[\frac{e^{a+bt_{i+1}} - e^{a+bt_{i}}}{b}\right]$$
(24)

where a and b are constants, and e is the base of the natural logarithm.

$$k = a + bt + ct^2$$

then:

$$k_a = \frac{1}{(t_{i+1} - t_i)} \int_{t_i}^{t_{i+1}} (a + bt + ct^2) dt$$

and evaluating the integral yields:

$$k_a = a + \frac{b}{2}(t_{i+1} + t_i) + \frac{c}{3}\frac{(t_{i+1}^3 - t_i^3)}{(t_{i+1} - t_i)}$$
(25)

where *a*, *b*, and *c* are constants.

6.5.3 When the relationship of k with t is more complex and does not lend itself to simple mathematical treatment, a numerical method may be used. It is in these cases that the power of the computer is particularly useful. There are a wide variety of numerical techniques available. The most suitable will depend on the particular situation, and the details of the factors affecting the choice are beyond the scope of this practice.

7. Input Data

7.1 In general, data input is in accordance with ASTM Standards or American National Standards. The source of other required data is noted.

7.2 Dimensions of Pipe and Pipe Insulation:

7.2.1 Only nominal pipe sizes and insulation thicknesses are required as input data. The actual dimensions of both pipe and pipe insulation are obtained by the computer from a software file based on Practice C 585 during the calculation.

7.3 Thermal Conductivity Versus Mean Temperature:

7.3.1 The data describing the relationship of thermal conductivity to mean temperature are obtained in accordance with Test Methods C 177, C 335, or C 518, as appropriate for the product.

7.3.2 To describe accurately the relationship of thermal conductivity to mean temperature for thermal insulations, especially those exhibiting inflection points due to condensations of the insulating gases, thermal conductivity tests at small temperature differences are required. The minimum temperature differences used will depend on the vapor pressure to temperature of the gases involved, and the accuracy of the test apparatus at small temperature differences. Sufficient tests must be made to characterize the conductivity versus mean temperature relationship over the desired temperature range.

NOTE 4—ASTM Committee C-16 is currently developing recommendations for preparing thermal conductivity curves for use in systems analysis. Although the exact procedures are beyond the scope of this practice, caution should be exercised. The use of experimental data to generate curves must include consideration of test sample geometry, temperature range of data, test temperature differentials, thickness effects, test boundary conditions, and test equipment accuracy. Especially important is that the test data should cover a temperature range of conditions wider than those of the analysis, so that the data is interpolated for the analysis rather than extrapolated.

7.4 Surface Coefficients:

7.4.1 The surface coefficient, h, as defined in Definitions C 168, assumes that the surroundings (fluid and visible surfaces) are at uniform temperature and that other visible surfaces are substantially perfect absorbers of radiant energy. It

includes the combined effects of radiation, conduction, and convection.

7.4.2 In many situations surface coefficients may be estimated from published values (2).

7.4.3 Procedures for Calculating Surface Coefficients— Where known surface coefficients are not available, this practice provides a calculational procedure to estimate the surface coefficient. This calculation is based on the assumption of heat flow from a uniformly heated surface. This assumption is consistent with those used in developing the remainder of this practice. In simple terms, the surface coefficient equations are based on those commonly used in heat transfer analysis. A detailed discussion of the many heat flow mechanisms is present in several texts (3, 4, 5) or similar texts.

7.4.4 Analysis Configurations-Several convective conditions have been identified as requiring separate treatment when calculating the surface coefficient. The first is the two geometries treated in this method, that is, flat (equipment) and circular cylinder (pipe). Another case identifies the two air flow systems common to most applications. Free convection is defined as air motion caused by the bouyancy effects induced by the surface-to-air temperature difference. This case is characterized by low velocity and, for most cases, includes any situation where the local air velocity is less than 1 mph (0.5 m/s). Forced convection is where some outside agent causes the air movement. For high air velocities, convection is the dominant mechanism of heat flow from the surface. The radiative heat flow surface coefficient is calculated separately and added to the convection losses since for a vast majority of cases, this mechanism operates independently of the convective transfer.

7.4.5 Surface Coefficient Calculation—Summary of *Method*—The convection coefficient calculation subroutine, SURCOF, developed for this practice, estimates the magnitude of the convection coefficient based upon the equations for the given set of geometric conditions and temperature-dependent air properties. The radiative component is also determined and added to yield the net surface coefficient. All equations used in the analysis (**3**) were experimentally developed. The equations used are briefly described in 7.4.7-7.4.9.

7.4.6 Alternative equation sets have been developed to calculate the surface heat transfer coefficients. These equation sets often include parameters in addition to those used in the development of the SURCOF subroutine described in this practice. These additional parameters are used to extend the data set to a wider range of conditions or better fit the data available. Use of these alternate equation sets instead of the SURCOF subroutine documentation is provided and similarity of results is demonstrated under the exposure conditions covered by the SURCOF documentation (See Appendix X1) (3).

7.4.7 Convection:

7.4.7.1 *Forced Convection*—One of the major contributors to surface heat transfer is the convection of air across a surface where some difference exists between their temperatures. Not only is the rate of heat flow controlled by the magnitude of the temperature difference but also by the speed of the air flow as

it passes the surface. Since convection is a complex phenomena and has been studied by many researchers, many empirically developed equations exist for estimating the surface coefficients. One of the simpler to apply and more commonly used system of equations is that developed by Langmuir (6). His equations were developed for conditions of moderate temperatures which are most commonly seen in cases of insulated piping or equipment systems. For the condition of the natural convection of air at moderate temperature Langmuir proposed the following equation:

$$Q_c = 0.296(t_s - t_a)^{1.25} \tag{26}$$

where:

 Q_c = heat transferred by natural convections, Btu/ft² (J/m²),

 $\overline{t_s}$ = temperature of surface, °F (°C), and t_a = temperature of ambient, °F (°C).

7.4.7.2 Modifications for Forced Convection—When the movement of the air is caused by some outside force such as the wind, forced ventilation systems, etc. Langmuir (6) presented a modifier of Eq 26 to correct it for the forced convection. This multiplier was stated as follows:

$$\sqrt{\frac{V + 68.9}{68.9}}$$

where V is the bulk air velocity (ft/min). In a more commonly presented form where the velocity is miles per hour, this correction term reduces to

$$\sqrt{1.00 + 1.277 \times \text{Wind}}$$
 (27)

where Wind = air movement speed (mph).

Combining Eq 26 and Eq 27, we have Langmuir's (6) equation for the convection heat transfer from a surface:

$$Q_c = 0.296(t_s - t_a)^{1.25} \sqrt{1 + 1.277 \times \text{Wind}}$$
 (28)

This equation will work for both forced and free convection because when Wind equals zero, the equation returns to its original form.

7.4.7.3 Convection for Geometric Variations-Further research by Rice and Heilman (7) refined the technology of Langmuir to account for changes in air film properties (density, thickness, viscosity) with the air film mean temperature. Also their refinements provided corrections to the equation form for geometric size, shape, and heat flow directions that permit use of the basic form of Langmuir's (6) equation for a host of conditions. The result of their research yields the following equation set which forms the basis for the surface coefficient routines used in this practice.

$$\begin{split} h_{cv} &= C \times \left(\frac{1}{d}\right)^{0.2} \times \left(\frac{1}{t_{\text{avg}}}\right)^{0.181} \\ &\times \Delta t^{0.266} \times \sqrt{1 + 1.277 \times Wind} \end{split} \tag{29}$$

where:

- = convective surface coefficient, $Btu/h \cdot ft^2 \cdot {}^{\circ}F$ (W/ h_{cv} $(m^2 \cdot K)$,
- = diameter for cylinder, in. (m). For flat surfaces and d large cylinders d > 24, use d = 24,
- = average temperature of air film, °F (°C) = $(t_s + t_a)/$ tavg 2, and

 Δt = surface-to-air temperature difference, °F $(^{\circ}\mathrm{C}), = (t_s - t_a).$

7.4.7.4 The values of constant C are shown in Table 1 as a function of shape and heat flow condition.

7.4.8 Radiative Component-In each previous case, the radiative exchanges are for the most part independent of the convection exchange. The exception is that both help to determine the average surface temperature. The radiation coefficient is simply the radiative heat transfer rate, based upon the Stefan-Boltzman Law, divided by the average surface-toair temperature difference. Thus the relationship can be expressed as the following:

$$h_{\rm rad} = \frac{E_{\rm miss} \times 0.1713 \times 10^{-8} \left((t_a + 459.6)^4 - (t_s + 459.6)^4 \right)}{(t_a - t_s)}$$
(30)

where:

$$E_{\text{miss}}$$
 = effective surface emittance (includes ambient emittance) and

$$0.1713 \times 10^{-8}$$
 = Stefan-Boltzman Constant (Btu/(h·ft ²· R⁴).

7.4.9 Overall Coefficient-Once the radiation and convection coefficients are determined for the specific case under investigation, the overall coefficient is determined by adding the two coefficients together.

$$h = h_{\rm cv} + h_{\rm rad} \tag{31}$$

8. Computer Programs

8.1 General:

8.1.1 The computer programs are written in Basic Fortran in accordance with ANSI X3.9.

Note 5-Identical versions of these computer programs have been successfully compiled and run on two processors. Only minor modifications necessary for conformance to the resident operating system were required for operation.

8.1.2 Each program consists of a main program and several subroutines. Other subroutines may be added to make the program more applicable to the specific problems of individual users.

8.1.3 The programs as presented call for the use of an interactive terminal connected in real-time to a computer. The computer controls the terminal interactively with programgenerated instructions and questions transmitted to the terminal. Alternatively a second device could be used for display or printing of computer messages. The final report can be displayed or printed on the message destination device or may be directed to a line printer or other hard copy unit. This is the usual device used for the final report when a cathode ray tube is used as the input terminal.

TABLE 1	Shape	Factors—Convection	Equations
---------	-------	--------------------	-----------

Shape and Condition	Value of C
Horizontal cylinders	1.016
Longer vertical cylinders	1.235
Vertical Plates	1.394
Horizontal plates, warmer than air, facing upward	1.79
Horizontal plates, warmer than air, facing downward	0.89
Horizontal plates, cooler than air, facing upward	0.89
Horizontal plates, cooler than air, facing downward	1.79

(小) C 680

TABLE 2 Regression Analysis of Sample Data for Examples 1 to 4

Insulation Type	Functional Relationship	Coefficients and Constants					Correlation	Correlation F value	Standard Error	
insulation type	Employed	а	b	С	TL	ΤU	Coefficient	r value	of Estimates	
Type 1 (Fig. 11)	$k = a + bt + ct^2$	0.400	$0.105 imes 10^{-3}$	$0.286 imes 10^{-6}$			0.999	550	0.0049	
Type 2 (Fig. 10)	lnk = a + bt	-1.62	$0.213 imes 10^{-2}$				0.999	2130	0.0145	
Type 3 (Fig. 12)	$k = a_1 + b_1 t$; $t \leq TL$	0.201	$0.39 imes10^{-3}$		-25		0.997	148	0.00165	
	$k = a_2 + b_2 t; TL < t < TU$	0.182	$-0.39 imes10^{-3}$		-25	50	0.997	187	0.00094	
	$k = a_3 + b_3 t; t \ge TU$	0.141	$0.37 imes10^{-3}$			50	0.993	69.3	0.00320	

8.2 *Functional Description of Program*— The flow charts, shown in Figs. 5 and 6 are a schematic representation of the operational procedures of the respective programs. They show

that logic paths for reading data, obtaining actual system dimensions, calculating and recalculating system thermal resistances and temperatures, relaxing the successive errors in

FIG. 5 Flow Diagram of the Computer Program C 680E for Insulated Equipment Systems

FIG. 6 Flow Diagram of Computer Program C 680P for Insulated Piping Systems

the temperature to within 0.1° of the temperature, calculating heat loss or gain for the system, and printing the parameters and solution in tabular form. The flow chart symbols are in accordance with ANSI X3.5.

8.3 *Computer Program Variable Description*—The description of all variables used in the programs are given in the listing of each program as comments. The listings of the mainline programs and the applicable subroutines are shown in Fig. 7Fig. 8Fig. 9.

8.4 Program Operation:

8.4.1 Logon procedures and any executive program for execution of this program must be followed as needed.

8.4.2 The input for the thermal conductivity versus mean temperature parameters is obtained as described in 7.3. (See the thermal curves depicted in Figs. 10-12.) The type code determines the thermal conductivity versus temperature relationship applying to the insulation. The same type code may be used for more than one insulation. As presented, the program will operate on the three functional relationships:

	400 C 680		
LAST REVISION N	1ADE 8/30/83	C680	1
	C680E COMPUTER PROGRAM	C680	2
THIS PROGR	RAM COMPUTES THE THERMAL PERFORMANCE OF A MULTI-	C680	3
LAYERED EQUIPME	INT INSULATION SYSTEM. HEAT TRANSFER EQUATIONS ARE	C680	4
Taken from Maca	Adams: Heat Transfer. The program is intended for	C680	5
USE ON AN INTER	RACTIVE TERMINAL CONTROLLED BY A TIME-SHARE	C680	6
COMPUTER FOR IN	FORMATION INPUT.	C680	7
UP TO 7 LA	YERS OF INSULATION MAY BE SPECIFIED FOR THE	C680	8
INSULATION SYST	rem Being Analyzed.	C680	9
TEN DIFFER	RENT INSULATION MATERIALS MAY BE SPECIFIED WITH	C680	10
	IN TEMPERATURE RELATIONSHIPS. PARAMETERS FOR THESE		
	R-SUPPLIED WITH NO DEFAULT NUMBERS SUPPLIED BY THE		
	CHECKS ARE MADE OF THE REASONABLENESS OF THESE	C680	
) TO TYPICAL INSULATION MATERIALS. CORRECTED VALUES		
	FOLLOWING AN ERROR MESSAGE.	C680	
	XE COEFFICIENT MAY BE INPUT OR THE SURFACE	C680	
	VIND SPEED MAY BE GIVEN, WHICH WILL CAUSE THE	C680	
SURFACE COEFFI	CIENT TO BE CALCULATED.	C680	
		C680	
VARIABLES	USED IN THE MAINLINE PART OF THIS PROGRAM-	C680	
		C680	-
	= DATE	C680	
EMISS	= SURFACE EMITTANCE OF THE INSULATION SYSTEM.	C680	
ERR	= ERROR SIGNAL RETURNED TO THE MAINLINE PROGRAM FO		
_	AN ILLEGAL ENTRY IN THE THICKNESS SCHEDULE.	C680	
I	= INDEX VARIABLE.	C680	
	= NOMINAL INSULATION SIZE OF LAYER I.	C680	
	= INSULATION K-CURVE PARAMETER ARRAY.	0680	
IP	= SELECT CODE FOR PRINTER USED FOR REPORT OUTPUT.		
IR	= SELECT CODE FOR TERMINAL USED FOR DATA INPUT.		
IW	= SELECT CODE FOR TERMINAL DISPLAYING INPUT	0680	
V /T	DIRECTIONS.	C680	
K(I) M	= THERMAL CONDUCTIVITY OF LAYER 1, BTU. IN. /HR. SF. F.		
M MAT(I)	= TEMPORARY INPUT VARIABLE USED FOR MATERIAL CODE.		
NFORM	= MATERIAL CODE OF LAYER I. = INDEX DEFINING SHAPE:	C680	
NF UKN		0680	
	1 = CYLINDRICAL 2 = FLAT.	C680 C680	
NLAYER	= NUMBER OF INSULATION LAYERS.	C680	
NOR	= ORIENTATION PARAMETER OF HEAT FLOW DIRECTION AT		
14044	SURFACE:	C680	
	1 = HORIZONTAL HEAT FLOW (VERTICAL SURFACE		
	2 = HEAT FLOW DOWN	C680	
	3 = HEAT FLOW UP.	C680	
Q	= RATE OF HEAT FLOW THROUGH THE INSULATION SYSTEM,		45
u u		C680	
R(1)	= THERMAL RESISTANCE OF LAYER I, HR. SF. F/BTU.	C680	40 47
RS	= THERMAL RESISTANCE OF SURFACE, HR. SF. F/BTU.	C680	
RSUM	= THERMAL RESISTANCE OF TOTAL SYSTEM, HR. SF. F/BTU.		
SURF	= THERMAL SURFACE COEFFICIENT, BTU, /HR, SF, F,	C680	4 2 50
SURFC	= COMPUTED SURFACE COEFFICIENT, BTU, /HR, SF, F.	0680	51
T(I)	= INNER TEMPERATURE OF LAYER I, F. THE OUTER	C680	52
	TEMPERATURE OF LAYER I IS THE INNER TEMPERATURE		53
	OF THE NEXT LAYER.	C680	54
		0000	Т

(III) C 680

FIG. 7 Computer Listing—Program C 680E—Thermal Performance of Multilayered Flat Insulation Systems

Type Code	Functional Relationship	9. Illustration
1 2	$k = a + bt + ct^2$ where <i>a</i> , <i>b</i> , and <i>c</i> are constants. $k = e^{a+bt}$ where <i>a</i> and <i>b</i> are constants and <i>e</i> is the	9.1 Genera
3	base of the natural logarithm $k = a_1 + b_1 t$; $t < TL$ $k = a_2 + b_2 t$; $TL < t < TU$ $k = a_3 + b_3 t$; $t > TU$	9.1.1 Four of the program temperature. N
	a_1 , a_2 , a_3 , b_1 , b_2 , b_3 are constants. <i>TL</i> and <i>TU</i> are, respectively, the lower and upper inflection points of an <i>S</i> -shaped curve.	itly or explici materials, hav

Additional or different relationships may be programmed but require modifications to the program.

С С C C ¢ С С Ċ C C C C £ C C 0 Ċ C C C C e C C С C Ċ C C С С С C С C C C C C C C 0 0 C 0 0 e £ C

8.4.3 For multiple number entry in a free field format, all numbers must be separated by commas.

on of Examples

al:

examples are presented to illustrate the utility of in calculating heat loss or gain and surface Most practical insulation design problems impliccitly call for such calculations. Three insulating ving equations forms for Types 1, 2, and 3, are considered. The fourth example illustrates a combination of these three materials.

NOTE 6-The curves contained herein are for illustration purposes only and not intended to reflect any actual product currently being produced.

∰ C 680

	_			
	С	TAMB = AMBIENT AIR TEMPERATURE, F.	C680	55
	C	TDELT = TEMPERATURE DIFFERENCE BETWEEN SURFACE AND	C680	56
	C	AMBIENT TEMPERATURES, F.	C680	57
	C	THK(I) = NOMINAL THICKNESS OF INSULATION LAYER I, INCHES.		
	C	THEAT = TOTAL THICKNESS OF INSULATION SYSTEM, INCHES.	C680	59
	C	TINT = INTERMEDIATE LAYER TEMPERATURE	C680	60
	C	TITLE = TITLE OF THE ANALYSIS.	C680	61
	C	TL = LOWER TEMPERATURE BOUNDARY FOR MATERIAL CODE 3.	C680	62
	C	TS = SURFACE TEMPERATURE OF THE INSULATION SYSTEM, F.	C680	63
	0	TSUM = TEST CRITERION FOR THERMAL STABILITY.	C680	64
	C	TU = UPPER TEMPERATURE BOUNDARY FOR MATERIAL CODE 3.	C680	
	C	WIND = WIND VELOCITY, MILES PER HOUR.	C680	66
	ç	XK1 = CALCULATED THERMAL CONDUCTIVITY AT 100F.	C680	67
	C	XK3 = CALCULATED THERMAL CONDUCTIVITY AT 300F.	C680	68
	C	XK6 = CALCULATED THERMAL CONDUCTIVITY AT 600F.	0680	69
0001	С		C680	70
0001		DIMENSION TITLE(15), DATE(15)	C680	71
0002		DIMENSION THE (7)	C680	72
0003		DIMENSION T(8), R(7), MAT(7)	C680	73
0004	0	REAL K(7), INSK(10,9)	C680	74
	C C	THE FOLLOWING A ADMINING DUCTING THE ADMINATION CAD	C680	75
	c C	THE FOLLOWING 3 COMMANDS DEFINE THE SELECT CODES FOR	0863	76
	C	THE TERMINALS USED FOR INPUT AND INSTRUCTION DISPLAY,	C680	77
	C C	AND THE PRINTER USED FOR SUMMARY REPORT OUTPUT. CONTACT	C680	78
	с С	YOUR COMPUTER CENTER FOR EXACT FORMAT.	0680	79
ODDE	ι	10-7	C680	80
0005		IR=7	C680	81
0006 0007		IW=7 IP=6	0680	82 20
0007	C	11-0	C680	
8000	ι.	D0 11 I=1,10	0680	84 05
0000		D0 10 J=1,9	C680 C680	
0010		INSK(I, J)=0	C680	86 87
0011	10	CONTINUE	C680	88
0012	11	CONTINUE	C680	
VV12	Ċ	CONTINOL	C680	90
0013	0	WRITE(IW, 20)	C680	91
0013	20	FORMAT(ASTM C-680 RECOMMENDED PRACTICE FOR THE DETERMINATION OF		
0014	20	*HEAT FLOW AND SURFACE // TEMPERATURES OF MULTIPLE-LAYERED EQUIPME		74 93
		*T INSULATION SYSTEM FOR AN INTERACTIVE // INPUT/OUTPUT COMPUTER T		
		*RMINAL (/)	C680	
	С	TYTER THE MADE IN 2	C680	96
0015	Ť	WRITE(IW, 30)	0680	97
0016	30	FORMAT(/ ENTER TITLE - 60 CHARACTER LIMIT()	0000	98
0017		READ(IR, 31)TITLE	C680	99
0018	31	FORMAT(15A4)	C680	
	c		C680	
0019	-	WRITE(IW, 40)	C680	
0020	4 0	FORMAT(' ENTER DATE - ANY FORMAT'/)	C680	
0021	••	READ(IR, 41)DATE	C680	
0022	41	FORMAT(15A4)	C680	
	Ċ		C680	
0023	-	WRITE(IW, 50)	C680	
0024	50	FORMAT(' ENTER AMBIENT TEMPERATURE, F')	0680	
		FIG. 7 (continued)		

9.1.2 Sample data relating thermal conductivity to mean temperature data for the three insulating materials are shown in Figs. 10-12. Least-square estimates of the regression curve for each sample data set produced a satisfactory fit to one of the program's functional types. The information in Table 2 was obtained from the regression analysis (least-squares fit) on each material.

9.2 *Example 1*:

9.2.1 Consider application of a Type 2 insulation to the flat vertical surfaces of a piece of hot equipment. The operating temperatures is 450°F (232°C). The equipment is located out-doors in an area where the winter design ambient tempera-

ture is 10°F (-12°C). Determine the insulation thickness required to maintain the heat losses below 35 Btu/h·ft ² (110 W/m^2).

9.2.2 Assuming the system faces virtually blackbody surroundings at the design ambient temperature, the surface coefficient may be obtained from the *ASHRAE Handbook of Fundamentals* (2). The value given for a nonreflective surface in a 15-mph (6.7-m/s) wind (winter) is 6.00 Btu/h·ft².°F (34 W/m²·K).

9.2.3 From Table 2 for the material designated as Type Code 2, the two coefficients required for the equation are a = -1.62 and b = 0.00213.

```
(IIII) C 680
```

0025		READ(IR, *)TAMB C680	
	С	C680	
0026		EMISS=-1.0 C680	
0027		WRITE(IW, 60) C680	
0028	60	FORMAT(' TYPICAL SURFACE COEFFICIENT IS 1.65. // IF COEFFICIENT ISC680	
		* TO BE CALCULATED FROM EMITTANCE AND WIND SPEED ENTER 01/1 OTHERWIC680	
0000		*SE ENTER SURFACE COEFFICIENT TO BE USED. () C680	
0029		READ(IR,*)SURF C680 IF(SURF_GT_0_0)_G0_T0_70 C680	
0030	~	IF (SURF. GT. 0. 0) GO TO 70 C680 C680	
0000	C		
0032		WRITE(IW,61) C680 FORMAT(1 TYPICAL EMITTANCE IS 0.9.1/1 TYPICAL WIND SPEED IS 0 MPH. C680	
0033	01	*// ENTER EMITTANCE, WIND SPEED, AND HEAT FLOW DIRECTION PARAMETERC680	
		*/ ENTER ENTITIANCE, WIND SPEED, AND HEAT FLOW DIRECTION PARAMETERICOOD *:/// 1 FOR HORIZONTAL HEAT FLOW (VERTICAL SURFACE)/// 2 FOC680	
		* / I FOR HORIZONTHE HENT FLOW (VERTICHE SORTHOE) / 2 FOCOOD . *R HEAT FLOW DOWN'// 3 FOR HEAT FLOW UP. //) C680	
0004			
0034	c	READ(IR, *)EMISS, WIND, NOR C680 C680	
0035	C 70	WRITE(IW, 71) C680	
0035	71	FORMAT(UP TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIC680	
0036	/1	*ONS MAY BE USED. // THEY ARE OF 3 TYPES. THE TYPES ARE: // C680	
		*/ MATERIAL CODE 1 - K = A + B * T + C * T**2// C680	
		* MATERIAL CODE $2 - K = EXP(A + B * T)'$ C680	
0037		WRITE(IW, 72) C680	
	72	FORMAT(5X, 'MATERIAL CODE 3 - K = A1 + B1 * T, FOR $T \leq TL'/$ C680	
0000	12	*' K = A2 + B2 * T, FOR TL < T < TU'/ C680	
		* K = A3 + B3 * T, FOR TU < T// WHERE A, BC680	
		*, AND C ARE THE COEFFICIENTS OF THE EQUATIONS, AND T IS THE MEAN //C680	
		* TEMPERATURE () C680	
	С	C680	
0039	Č	I=0 C680	
0040	73	I=I+1 C680	
	Ċ	C680	
0041	-	WRITE(IW, 74)I C680	
0042	74	FORMAT(/ ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULAC680	142
		*TION NO. (, 13) C680	143
0043	75	CONTINUE C680	144
0044		READ(IR, *)M C680	145
0045		IF (M-1) 130, 80, 90 C680	146
	C	C680	147
0046	80	WRITE(IW, 81) C680	148
0047		INSK(1,1)=1.0 C680	149
0048	81	FORMAT(/ ENTER A, B, C FOR MATERIAL TYPE 1. /) C680	150
0049		READ(IR, *)INSK(I, 2), INSK(I, 3), INSK(I, 4) C680	151
0050		XK3=INSK(1,2)+INSK(1,3)*300.+INSK(1,4)*300.**2 C680	152
0051		XK6=INSK(1,2)+INSK(1,3)*600. +INSK(1,4)*600. **2 C680	153
0052		IF(ABS((XK3-, 46)7, 46), GT, 0, 15) G0 T0 82 C680	154
0054		IF(ABS((XK6-, 57)7, 57), LT. 0, 15) G0 T0 73 C680	155
0056			156
0057	83	FORMAT(/ K-CURVE IS NOT IN NORMAL RANGE // K AT 300F= 1, F6. 3/, 10680	
		* K AT 600F =', F6. 3/, ' ENTER 1 TO RE-ENTER K DATA, OTHERWISE 0'C680	158
		*) C690	
0058		READ(IR, *)NN C680	
0059	_	IF (NN. EQ. 1) GO TO 80 C680	
	С		162
		FIG. 7 (continued)	

FIG. 7 (continued)

9.2.4 From past experience, it is estimated that the required thicknesses will fall in the range from 4.0 to 5.0 in. (101 to 127 mm). This range will be covered in increments of $\frac{1}{2}$ in. (3 mm).

9.2.5 The resulting programing and analysis is given in Fig. 13 where 4.5 in. (114 mm) is the least thickness to maintain heat loss below 35 Btu/h·ft² (110 W/m²).

9.3 Example 2:

9.3.1 Determine the minimum nominal thickness of Type 1 pipe insulation required to maintain the surface temperature of a horizontal 3-in. (76-mm) iron pipe below 130°F (54°C). Consider a pipe temperature of 800°F (427°C). The ambient temperature is 80°F (26°C).

9.3.2 Assuming the piping is located in a large room with surrounding surfaces at ambient temperature and that the emissivity of the system is not significantly different from that of bare steel pipe (0.9), the surface coefficient could be estimated from the *ASHRAE Handbook of Fundamentals* (2). Because the thicknesses to be chosen will provide a surface temperature about 50°F (28°C) above the 80°F (26°C) ambient, the 50° column is entered. The system diameter (insulation size) is not known since it will depend on the insulation thickness. For the first calculation, and the estimated insulation diameter, 9 in. (229 mm), 1.76 Btu/(h·ft².°F) (10 W/m²·K), will be used. The thicknesses chosen as a result of the first calculation will provide a basis for reestimating the surface

0061	_	G0 T0 73 IF (M-3) 100,110,120 WRITE(IW,101) INSK(I,1)=2.0 FORMAT(' ENTER A, B FOR MATERIAL CODE 2.') READ(IR.*)INSK(I,2), INSK(I,3) ARG1=INSK(I,2)+INSK(I,3)*100	C680	
	С		C680	
0062		IF (M-3) 100, 110, 120	C680	
	C		C680	
0063	100	WRITE(1W, 101)	C680	
0064		INSK(1,1)=2.0	C680	
0065	101	FURMAT('ENTER A, B FUR MATERIAL CODE 2.')	C680	
0066		READ(TRS *) INSK(1, Z), INSK(1, 3)	C680	
0067			0680	
0068 0069		ARG3=INSK(I,2)+INSK(I,3)*300. IF(ARG1,GT,-200,0,AND,ARG3,GT,-200,0) G0 T0 103	C680	
0067		WRITE(IW, 102)	C680	
	107	FORMAT(' INTERMEDIATE COMPUTATIONS EXCEED VALID NUMBER RANGE '/	C680	
WIZ	102	* CHECK THE COEFFICIENTS FOR THIS MATERIAL AND RE-ENTER. ()	C680 C680	
0073		* CHECK THE COEFFICIENTS FOR THIS PHILERINE HAND RETENTER (C680	
0075	C		C680	
0074	103	XK1=FYP/ORG1)	C680	
0075	100	YKR=FYP(ARG3)	C680	
0076		XK1=EXP(ARG1) XK3=EXP(ARG3) IF(ABS((XK1-, 245)/, 245), GT, 0, 15) GO TO 104	C680	
0078		IF(ABS((XK3 375)/. 375), LT. 0. 15) 60 TO 73	C680	
0080	104		C680	
0081	105		C680	
		* F6. 3/1 K AT 300F =1, F6. 3/, 1 ENTER 1 TO RE-ENTER K DATA, OTHE		
		*WISE 0'/)	C680	
0082		READ(IR, *)NN	C680	187
0083		IF(NNLEQ.1) GO TO 100	C680	188
	3		C680	189
0085		GO TO 73	C680	190
	C		C680	191
0086	110	WRITE(IW,111)	C680	192
0087		INSK(1, 1)=3.0	C680	193
0088	111	FORMAT(1 FOR MATERIAL TYPE 3:177 ENTER A17 B17 TL1)	C680	194
0089		READ(IR, *)INSK(I, 2), INSK(I, 3), INSK(I, 4)	C680	
0090		WRITE(IW, 112)	C680	-
0091	112	FORMAT(' ENTER A2, B2, TU')	C680	
0092		READ(IR, *)INSK(1, 5), INSK(1, 6), INSK(1, 7)	0680	
0093		WRITE(IW, 113)	0680	
0094	113	FORMAT(' ENTER A3, B3')	C680	
0095		<pre>WRITE(IW.112) FORMAT(' ENTER A2, B2, TU') READ(IR.*)INSK(I,5),INSK(I,6),INSK(I,7) WRITE(IW,113) FORMAT(' ENTER A3, B3') READ(IR.*)INSK(I,8),INSK(I,9) TL=(INSK(I,5)-INSK(I,2))/(INSK(I,3)-INSK(I,6)) TU=(INSK(I,5)-INSK(I,5))/(INSK(I,6)-INSK(I,9)) F(40000,1000,1000,1000,1000,1000,1000,100</pre>	C680	
0096		L=(INSK(1, 5)-INSK(1, 2))/(INSK(1, 3)-INSK(1, 6))	0680	
0097		(U=(INSK(1, 8)-INSK(1, 5))/(INSK(1, 6)-INSK(1, 9))	C680	
0098		IF(ABS(TL-INSK(I, 4)), GT. 5.) GO TO 114	C680	
0100	414	IF(ABS(TU-INSK(1,7)), LT.5,) GO TO 73	C680	
0102	114	WRITE(IW, 115)TL, INSK(I, 4), TU, INSK(I, 7) FORMAT(1 CALCULATED TEMPERATURE LIMITS DO NOT AGREE WITH THE VAL	0860 0640 3	
0103	115		ALC680	
		+CULATED IS / F8. 2/ VS. / F8. 2/ TO IGNORE THIS AND CONTINUE PROG		
		*M EXECUTION ENTER 01/11 TO SUBSTITUTE THE CALCULATED LIMITS FOR TH		
		* INPUT VALUES ENTER 1. 1/1 TO RE-ENTER ENTIRE DATA SET FOR THIS M		
		*ERIAL ENTER 2')		212
	С	ana tana tana ang silan 12 ang 17		213
0104	÷	READ(IR, *)M		214
0105		IF(M, EQ. 0) GO TO 73		215
0107		IF(M.EQ. 2) GO TO 110		216
		FIG. 7 (continued)		
		- (

coefficients. These can be refined if a more rigorous treatment of pipe temperature-thickness combinations that satisfy the surface temperature criterion is required.

9.3.3 Referring to Table 2, for the material designated as Type 1, the required constants for the thermal conductivity equations are: a = 0.400, $b = 0.105 \times 10^{-3}$, and $c = 0.286 \times 10^{-6}$.

9.3.4 From experience, the nominal insulation thicknesses of 2, $2\frac{1}{2}$, and 3 in. (51, 64, and 76 mm) are estimated to include the range of solutions.

9.3.5 The solutions for this problem are given in Fig. 14 where 3.0 in. (76 mm) is shown to maintain a surface

temperature below 130°F (54°C).

9.4 *Example 3*:

9.4.1 Example 3 is a repeat of Example 2 except that the internal surface coefficient routine in the program C 680P2 is used.

9.4.2 Assume the same ambient and operating conditions, but the program calculates the surface coefficient from a flow of 0 mph (0 m/s) and a surface emittance of 0.9 instead of choosing from a handbook.

9.4.3 The results of this analysis (Fig. 15) yield approximately the same answer as 9.3 and provide for more realistic

0109 INSK(1, 4)=TL C800 218 0110 INSK(1, 7)=TU C680 219 0111 00 T0 73 C800 221 012 120 MRTTE(1M, 121) C680 223 013 01 To 75 C800 223 014 G0 TO 75 C800 223 015 130 IN=1-1 C600 225 015 130 IN=1-1 C600 225 0115 130 IN=1-1 C600 225 0116 129 MRTE(1M, 131) C680 226 0117 131 FORMAT(* DEEN NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') C800 228 0120 IF (MLAYER LE 0) G0 TO 133 C680 231 0121 147 MRTE(1M, 141) C800 233 0122 141 MRTE(1M, 141) C680 234 0123 124 FORMAT(* MUMBER OF LAYERS IS OUT OF RANGE: REENTER ') C680 233 0122 140 MRTE(1M, 141) C680 234 0123 140 MRTE(1M, 141) C680 243 0124 132 MRTE(1M, 141) C680 243 0125 141 FORMAT(* MERE LAYER INFORMATION FR		С		C680	217
0111 60 T0 73 C480 220 C VRITE(1H, 121) C480 221 0113 121 FORMAT(***** MATERIAL CODE OUT OF RANGE; RE-ENTER *****/) C480 222 0113 121 FORMAT(***** MATERIAL CODE OUT OF RANGE; RE-ENTER *****/) C480 225 0114 60 T0 75 C480 225 C 0115 130 TH=1-1 C480 225 0116 129 WRITE(1W, 131) C480 225 0117 131 FORMAT(* ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') C480 223 0119 PEAD(1R, *NLAYER C480 233 0120 IF(MLAYER LE 0) GO TO 133 C480 231 0121 IF(MLAYER LE 7) GO TO 140 C480 233 0122 ISMATECH, MAH C480 236 0123 GO TO 132 C480 236 0124 I34 WRITE(1H, 141) C480 236 0128 +1 FORMAT(* ENTER INFORMATION FROM THE EQUIPHENT SURFACE TO THEC680 238 0129 D0 151 I=1. NLAYER C480 241 0130 142 WRITE(1W, 143) C480 242 0142	0109		INSK(I,4)=TL	0680	218
C Construction Construction 0112 120 WRITE(1W, 121) C680 C222 0113 121 FORMAT(****** MATERIAL CODE OUT OF RANGE; RE-ENTER *****/) C680 C222 0114 GO TO 75 C680 C230 C680 C230 0115 130 IM=1-1 C680 C680 C221 0116 129 WRITE(1W, 131) C680 C680 C290 C680 C290 0119 CONTINUE C680 C390 C680 C390 C490 C290 C680 C390 C490 C290 C680 C390 C490 C290 C680 C390 C490 C390 C490 C490 C331 C480	0110		INSK(I,7)≖TU	C680	219
C C C400 221 0112 120 NRITE(111, 121) C480 222 0113 121 FORMAT(***** MATERIAL CODE OUT OF RANGE: RE-ENTER *****//) C680 224 0114 G0 T0 75 C480 225 C C480 225 0115 130 IM=1-1 C480 226 C C480 227 0117 131 FORMAT(* ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') C480 228 0119 CONTINUE C480 231 C480 232 0120 IF(INLAYER LE 7) G0 T0 133 C480 231 0121 IF(INLAYER LE 7) G0 T0 133 C480 233 0122 IF(INLAYER LE 7) G0 T0 132 C480 235 0124 G0 T0 132 C480 234 C480 235 0121 IF(INLAYER LE 7) G0 T0 C480 236 C C480 236 0122 IF(INLAYER LE 7) G0 T0 C480 237	0111		G0 T0 73	C680	220
0113 121 FORMAT(***** MATERIAL CODE OUT OF RANGE; RE=ENTER *****//) C & C & C & C & C & C & C & C & C & C &		С		0680	221
0114 60 T0 75 C680 224 C C680 225 0115 130 TH=1-1 C680 225 0116 129 WRITE(IW, 131) C680 227 0117 131 FORMAT(ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') C680 228 0118 132 CONTINUE C680 230 0120 TF(MLAYER LE, 0) 60 TO 133 C680 231 0121 TF(MLAYER LE, 0) 60 TO 140 C680 233 0122 134 FORMAT(AUMEER OF LAYERS IS OUT OF RANGE; REENTER ') C680 233 0123 60 TO 132 C680 233 C C680 233 0124 134 FORMAT(EAVER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC80 238 * AMBIENT SURFACE'/ C680 236 0131 143 FORMAT(EAVER LAYER C680 243 0131 143 FORMAT(MAXIMIN OF 7') C680 243 0132 DEOMATIC ENTER LAYER C680 243 0134 FORMAT(MERTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 243 <td>0112</td> <td>120</td> <td>WRITE(IW, 121)</td> <td>C680</td> <td>222</td>	0112	120	WRITE(IW, 121)	C680	222
C 6680 225 0115 130 IM=1-1 6680 226 0116 129 HRITE(IM, 131) 6680 227 0117 131 FORMAT(' ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') 6680 229 0118 132 CONTINUE 6680 231 0120 IF(MLAYER LE, 0) GO TO 133 6680 231 0121 IF(MLAYER LE, 7) GO TO 140 6680 232 0121 13 FORMAT(' MUMBER OF LAYERS IS OUT OF RANGE; REENTER ') 6680 233 0122 14 MRITE(IW, 141) 6680 235 012 GO TO 132 6680 235 6680 237 0121 141 FORMAT(' MUMBER OF LAYERS IS OUT OF RANGE; REENTER ') 6680 238 0122 141 FORMAT(' MUMBER OF LAYERS IS OUT OF RANGE; REENTER ') 6680 243 0132 READ(IR, HATE) 6680 241 6680 241 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 40. ', 12) 0132 READ(IR, HATE)), THK(I) 6680 245 6480 245 0133 IF(IMAT(I), GL O, AND, MAT(I), LE IM) 60 TO 151 </td <td>0113</td> <td>121</td> <td>FORMAT(1 **** MATERIAL CODE OUT OF RANGE; RE-ENTER ****//)</td> <td>C680</td> <td>223</td>	0113	121	FORMAT(1 **** MATERIAL CODE OUT OF RANGE; RE-ENTER ****//)	C680	223
0115 130 IM=T=1 C680 226 0116 129 HRITE(IH, 131) C680 227 0117 031 FORMAT(' CINTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') C680 229 0118 132 CONTINUE C680 229 0119 READ(IR, *)NLAYER C680 230 0120 IF(INLAYER LE, 7) GO TO 133 C680 231 0121 134 HRITE(IH, 134) C680 232 0122 134 HRITE(IH, 141) C680 235 0126 GO TO 132 C680 237 0127 140 WRITE(IH, 141) C680 237 0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 141 FORMAT(' ENTER LAYER C680 239 0129 D0 151 INALAYER C680 240 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NCK80 242 +0, ', 12) C680	0114		GO TO 75	C680	224
0116 129 WRITE(IW, 131) C680 227 0117 131 FORMAT('ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') C680 228 0118 132 CONTINUE C680 230 0120 IF (MLAYER LE 0) GO TO 133 C680 231 0121 IF (MLAYER LE 7) GO TO 140 C680 232 0122 IF (MLAYER LE 7) GO TO 140 C680 233 0123 GO TO 132 C680 234 0124 I34 HORMAT(' MUMBER OF LAYERS IS OUT OF RANGE; REENTER.') C680 236 0125 134 FORMAT(' MUMBER OF LAYERS IS OUT OF RANGE; REENTER.') C680 233 0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 0129 D0 151 I=1, NLAYER C680 240 0131 44 HOTER INFORMATION NO. AND INSULATION THICKNESS FOR LAYER NC680 241 0131 GEROU(IR, *)MAT(1), THK(1) C680 243 0132 READ(IR, *)MAT(A), THK(1) C680 244 0131 <		C		0680	225
0117 131 FORMAT(' ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7') C680 228 0118 132 CONTINUE C680 230 0119 READ(IR, *)NLAYER C680 231 0120 IF(NLAYER LE 0) G0 TO 133 C680 231 0121 IF(NLAYER LE 7) GO TO 140 C680 232 0121 13 MRITE(IW, 134) C680 232 0122 13 MRITE(IW, 134) C680 232 0121 14 MRITE(IW, 141) C680 235 0122 140 WRITE(IW, 141) C680 237 0123 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 141 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 + 0'.12) C680 243 0132 READ(IR, *)MAT(I), THK(I) C680 244 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 + 0'.12) C680 244<	0115	130	IM=I-1	0680	226
0118 132 CONTINUE C680 229 0119 READ(IR, *)NLAYER C680 230 0120 IF(NLAYER, LE, 0) G0 TO 133 C680 231 0121 IF(NLAYER, LE, 0) G0 TO 140 C680 232 0124 133 WRITE(IN, 134) C680 233 0125 134 FORMAT(' NUMBER OF LAYERS IS OUT OF RANGE; REENTER.') C680 235 0127 140 WRITE(IN, 141) C680 235 0128 141 FORMAT(' NUMBER OF LAYERS IS OUT OF RANGE; REENTER.') C680 238 0127 140 WRITE(IN, 141) C680 239 0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 248 0130 142 WRITE(IN, 143)I C680 240 0131 143 FORMAT(' HATER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 133 IF(THK(I) C680 243 144 WRITE(IN, 145) C680 245 154	0116	129	WRITE(IW, 131)	0860	227
0119 READ(1R, *)NLAYER C680 230 0120 IF(MLAYER, LE, 0) 60 TO 133 C680 231 0121 IF(NLAYER, LE, 0) 60 TO 133 C680 233 0122 IF(NLAYER, LE, 0) 60 TO 140 C680 233 0123 IF(NLAYER, LE, 0) 60 TO 140 C680 233 0124 133 WRITE(1W, 134) C680 233 0125 134 FORMAT(' NUMBER OF LAYERS IS OUT OF RANGE; REENTER. ') C680 236 0127 140 WRITE(1W, 141) C680 237 0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 + AMBIENT SURFACE'/) C680 241 C680 241 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 0132 READ(IR, *)MAT(1), THK(1) C680 243 0133 IF(HA(1)). GT 0. AND. MAT(1), LE. IM) 60 TO 151 C680 244 0133 IF(HA(1)). GT 0. AND. MAT(1), LE. IM) 60 TO 151 C680 249 0134 FORMA	0117	131	FORMAT(/ ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7/)	C680	228
0120 IF (NLAYER LE 0) 60 T0 133 C680 231 0121 IF (NLAYER LE 7) 60 T0 140 C680 232 0124 133 WRITE (IW, 134) C680 233 0125 134 FORMAT (* MUBER OF LAYERS IS OUT OF RANGE; REENTER ') C680 234 0126 60 T0 132 C680 233 C680 235 0 C C680 234 0128 140 WRITE (IW, 141) C680 236 0129 D0 151 1=1, NLAYER C680 243 0130 142 FORMAT (* ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 242 + 0. ', 12) C680 243 0131 143 FORMAT (* ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 + 0. ', 12) C680 243 0132 READ(IR, *)MAT(I), THK (I) C680 244 0133 IF (MAT(I), E0, 0) 60 TO 144 C680 244 0134 IF (THAT(I), LE 0, 0) 60 TO 144 C680 244 0135 IF (MAT(I), ATS) C680 250 0136 IF (MAT(I), THK (I) C680 251 0135 GO TO 142 C680 251 <	0118	132	CONTINUE	6680	229
0122 IF (NLAYER LE. 7) 60 T0 140 C680 232 0124 133 WRITE(IW, 134) C680 233 0125 134 FORMAT(* NUMBER OF LAYERS IS OUT OF RANGE; REENTER. ') C680 235 0126 60 T0 132 C680 233 C680 233 0127 140 WRITE(IW, 141) C680 235 0128 141 FORMAT(* ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 * AMBIENT SURFACE*(*) C680 240 0130 142 WRITE(IW, 143)1 C680 242 0131 143 FORMAT(* ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 242 0131 143 FORMAT(* ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 0132 READ(IR, *)MAT(I), THK(1) C680 243 0133 IF (THK(1), LE 0.01 60 TO 144 C680 244 0134 IF (THK(1), LE 0.01 60 TO 151 C680 245 0135 IF (MAT(1), ATS) C680 251 C 0139 60 TO 142 C680 251 C 0139 60 TO 142 C680 255 C 0141 TO WRITE(IW, 171)<	0119		READ(IR, *)NLAYER	C680	230
0124 133 WRITE(1W, 134) C680 233 0125 134 FORMAT(* NUMBER OF LAYERS IS OUT OF RANGE; REENTER. ') C680 234 0126 G0 TO 132 C C680 235 0127 140 WRITE(1W, 141) C680 235 0127 140 WRITE(1W, 141) C680 237 0128 141 FORMAT(* ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 + AMBIENT SURFACE*// C680 240 C680 241 0130 142 WRITE(1W, 143)1 C680 242 +0.*, 12) C014 C680 244 0131 143 FORMAT(* ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 +0.*, 12) C680 244 C680 245 0132 READ(IR,*)MAT(1), THK(1) C680 245 0133 IF(THK(1), LE 0.0) 60 TO 144 C680 246 C C C680 246 C C C680 255	0120		IF(NLAYER, LE. 0) GO TO 133	C680	231
0125 134 FORMAT(* NUMBER OF LAYERS IS OUT OF RANGE; REENTER. ') C & 234 0126 G0 TO 132 C & 235 C C & 235 C C & 235 C C & 236 0127 140 WRITE(1W, 141) C & 236 0128 141 FORMAT(* ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 * AMBIENT SURFACE'/) C & 300 239 0130 142 WRITE(1W, 143)1 C & 630 131 143 FORMAT(* ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 *0. ', 12) C & 680 243 133 IF(THK(1), LE 0.0) & 00 TO 144 C & 680 134 FORMAT(* MATERIAL CODE OR THICKNESS IS OUT OF RANGE */) C & 680 137 144 WRITE(1W, 145) C & 680 245 138 145 FORMAT(* MATERIAL CODE OR THICKNESS IS OUT OF RANGE */) C & 680 250 139 G0 TO 142 C & 680 251 C C & 680 251 141 TOR WRITE(1W, 145) C	0122		IF (NLAYER LE. 7) GO TO 140	C680	232
0126 G0 T0 132 C680 235 C C680 236 0127 140 HRITE (1H, 141) C680 237 0128 141 FORMAT (* ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 * AMBIENT SURFACE (*) C680 241 0131 142 HRITE (1H, 143)1 C680 241 0131 143 FORMAT (* ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 +0 - / 12) 0 - / 12) EAD(IR, *)MAT(1), THK(1) C680 243 0132 READ(IR, *)MAT(1), THK(1) C680 244 0 - / 12) C = 00 0 0 TO 144 C680 245 0 - / 12) C = 00 0 0 TO 151 C680 245 0 - / 12) C = 00 0 0 TO 151 C680 245 0 - / 12) C = 00 0 0 TO 151 C680 245 0 - / 12 C = 00 0 0 TO 151 C680 245 0 - / 12 C = 00 0 0 TO 151 C680 246 0 - / 12 C = 00 0 0 TO 151 C680 252 0131 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE '/) C680 253 0141 TO WRITE(1H, 171) C680 254	0124	133	WRITE(IW, 134)	C680	233
C C680 236 0127 140 WRITE(IW, 141) C680 237 0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 + AMBIENT SURFACE'/) C680 237 0129 D0 151 1=1.NLAYER C680 241 0130 142 WRITE(IW, 143)1 C680 242 +0.', 12) C680 243 0132 READ(IR, *)MAT(I), THK(I) C680 243 0133 IF(THK(I), LE 0.0) 60 TO 144 C680 244 0135 IF(THK(I), LE 0.0) 60 TO 144 C680 244 0135 IF(THK(I), LE 0.0) 60 TO 151 C680 244 0136 144 WRITE(IW, 145) C680 244 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE.'/) C680 248 0138 145 CONTINUE C680 251 C C CASE 251 C C680 252 0141 TO WRITE(IW, 171) C680 255 C CASE 255 C C680 255 C C C680 255 C MAILI	0125	134	FORMAT(/ NUMBER OF LAYERS IS OUT OF RANGE; REENTER. /)	0863	234
0127 140 HRITE(1H, 141) C680 237 0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 • AMBIENT SURFACE'/) C680 239 0129 D0 151 1=1.NLAYER C680 240 0130 142 HRITE(1H, 143)1 C680 242 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 •0.151 IF(THK(1).LE.0.0) GO TO 144 C680 244 0133 IF(THK(1).LE.0.0) GO TO 144 C680 245 0135 IF(THK(1).LE.0.0) GO TO 151 C680 246 0135 IF(THK(1).LE.0.0) GO TO 144 C680 247 0137 144 HRITE(1H, 145) C680 248 0138 IF(THK(1).LE.0.0) GO TO THICKNESS IS OUT OF RANGE.1/) C680 249 0139 GO TO 142 C680 251 C C680 251 C UNITINUE C680 253 C C680 254 0140 HRITE(1H, 171	0126		GO TO 132	0860	235
0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 AMBIENT SURFACE'/) D0 151 I=1, NLAYER C680 240 O131 142 WRITE(IW, 143)I C680 242 + 0, ', 12) C680 243 + 0, ', 12) C680 244 + 0, ', 12) C680 245 C680 244 O, 12) READ(IR, *)MAT(1), THK(1) C680 245 IF(THK(1), LE 0, 0) GO TO 144 C680 245 IF(THK(1), LE 0, 0) GO TO 144 C680 245 IF(THK(1), LE 0, 0) GO TO 144 C680 246 C <lic< li=""> C C <lic< <="" td=""><td></td><td>0</td><td></td><td>C680</td><td>236</td></lic<></lic<>		0		C680	236
0128 141 FORMAT(' ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THEC680 238 AMBIENT SURFACE'/) D0 151 I=1, NLAYER C680 240 O131 142 WRITE(IW, 143)I C680 242 + 0, ', 12) C680 243 + 0, ', 12) C680 244 + 0, ', 12) C680 245 C680 244 O, 12) READ(IR, *)MAT(1), THK(1) C680 245 IF(THK(1), LE 0, 0) GO TO 144 C680 245 IF(THK(1), LE 0, 0) GO TO 144 C680 245 IF(THK(1), LE 0, 0) GO TO 144 C680 246 C <lic< li=""> C C <lic< <="" td=""><td>0127</td><td>140</td><td>WRITE(IW,141)</td><td>C680</td><td>237</td></lic<></lic<>	0127	140	WRITE(IW,141)	C680	237
* AMBIENT SURFACE '/) C680 239 0129 D0 151 I=1, NLAYER C680 240 0130 142 WRITE(1W, 143) I C680 241 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 0132 READ(IR, *)MAT(I), THK(I) C680 243 0133 IF(THK(I). LE 0, 0) 60 TO 144 C680 245 0135 IF(MAT(I). GT. 0. AND. MAT(I). LE IM) 60 TO 151 C680 245 0137 144 WRITE(IW, 145) C680 245 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE. '/) C680 249 0139 GO TO 142 C680 253 C C680 251 C C C680 251 C C680 253 0140 151 CONTINUE C680 253 C C680 254 0141 170 WRITE(IW, 171) C680 255 C C C680 255 C C C680 255 C C C680 257 C MAINLINE CALCULATING ROUTINE C680 256 C C680 257 C					
0130 142 WRITE(IW, 143)T C880 241 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 +0. ', 12) C680 243 0132 READ(IR, *)MAT(I), THK(I) C680 244 0133 IF (THK(I). E. 0. 0) 60 T0 144 C680 245 0135 IF (MAT(I). GT. 0. AND. MAT(I). LE. IM) G0 T0 151 C680 248 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE. '/) C680 249 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE. '/) C680 249 0139 60 T0 142 C680 250 C142 C680 251 C C C680 251 C C680 251 C C C680 255 C C680 255 C MAITE(IW, 171) C680 255 C C680 255 C MAINLINE CALCULATING ROUTINE C680 255 C C680 256 C MAINLINE CALCULATING ROUTINE </td <td></td> <td></td> <td></td> <td></td> <td></td>					
0130 142 WRITE(IW, 143)I C680 241 0131 143 FORMAT(' ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NC680 242 +0, ', 12) C680 243 0132 READ(IR, *)MAT(I), THK(I) C680 244 0133 IF(THK(I), E.O. 0) 60 TO 144 C680 245 0135 IF(MAT(I), GT. 0, AND, MAT(I), LE, IM) 60 TO 151 C680 246 0137 144 WRITE(IW, 145) C680 247 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE.'/) C680 249 0139 G0 TO 142 C680 250 C140 C680 251 C C C680 251 C C680 251 C C C680 251 C C680 251 C C C680 251 C C680 255 C MRITE(IW, 171) C680 255 C C680 255 C MAINLINE CALCULATING ROUTINE C680 256 C C680 257	0129		DO 151 I=1, NLAYER	0680	240
#0. ', 12) C680 243 0132 READ(IR, *)MAT(I), THK(I) C680 244 0133 IF(THK(I), LE, 0, 0) 60 T0 144 C680 245 0135 IF(MAT(I), GT, 0, AND, MAT(I), LE, IM) 60 T0 151 C680 247 C C C680 247 0137 144 WRITE(IW, 145) C680 247 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE. '/') C680 248 0139 60 TO 142 C680 251 C680 252 0140 151 CONTINUE C680 253 C CARD(IR, *)T(1) C680 253 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F'') C680 254 C MAINLINE CALCULATING ROUTINE C680 255 C C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 257 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 262 0144 THKTOT=THKTOT+THK(I) C680 262 C680 264 0145 D0 200 I=1, NLAYER C680 262 C680 264		142		C680	241
#0. ', 12) C680 243 0132 READ(IR, *)MAT(I), THK(I) C680 244 0133 IF(THK(I), LE, 0, 0) 60 T0 144 C680 245 0135 IF(MAT(I), GT, 0, AND, MAT(I), LE, IM) 60 T0 151 C680 247 C C C680 247 0137 144 WRITE(IW, 145) C680 247 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE. '/') C680 248 0139 60 TO 142 C680 251 C680 252 0140 151 CONTINUE C680 253 C CARD(IR, *)T(1) C680 253 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F'') C680 254 C MAINLINE CALCULATING ROUTINE C680 255 C C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 257 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 262 0144 THKTOT=THKTOT+THK(I) C680 262 C680 264 0145 D0 200 I=1, NLAYER C680 262 C680 264	0131	143		NC680	242
0132 READ(IR,*)MAT(I), THK(I) C680 244 0133 IF(THK(I), LE, 0, 0) 60 TO 144 C680 245 0135 IF(MAT(I), GT, 0, AND, MAT(I), LE, IM) 60 TO 151 C680 247 C C680 243 C680 243 0137 144 WRITE(IW, 145) C680 243 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE '/) C680 243 0139 G0 TO 142 C680 253 C680 251 C C C680 253 0140 151 CONTINUE C680 253 C C C680 253 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F') C680 255 C MAINLINE CALCULATING ROUTINE C680 255 C MAINLINE CALCULATING ROUTINE C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 260 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 264 0144 THKTOT=0.0 C680 264 C680 264 0145 D0 200 I=1, NLAYER C680 264 C680 264 C TDELT=T(1)-TAMB C680 264 C680 264 C					
0133 IF(THK(1). LE 0. 0) GO TO 144 C680 245 0135 IF(MAT(1). GT. 0. AND. MAT(1). LE. IM) GO TO 151 C680 246 C C680 247 0137 144 WRITE(IW, 145) C680 248 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE. '/) C680 249 0139 GO TO 142 C680 251 C 0140 151 CONTINUE C680 251 C C C680 251 C C C680 252 0141 170 WRITE(IW, 171) C680 252 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F') C680 254 C MAINLINE CALCULATING ROUTINE C680 255 C MAINLINE CALCULATING ROUTINE C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 264 C MATOT=D. 0 C680 264 C680 265 C C C680 264 C680 264 C145 D0 200 I=1, NLAYER C680 264 C680 264 C145 D0 200 I=1, NLAYER C680 264 C680 264 C TDELT=T(1)-TAMB C680	0132			0680	244
0135 IF(MAT(1), GT, 0, AND, MAT(1), LE, IM) GO TO 151 C680 246 0 C C680 247 0137 144 WRITE(1W, 145) C680 248 0138 145 FORMAT(7, MATERIAL CODE OR THICKNESS IS OUT OF RANGE, 7/) C680 249 0139 GO TO 142 C680 251 C680 251 0140 151 CONTINUE C680 251 0141 170 WRITE(1W, 171) C680 253 0142 171 FORMAT(7 ENTER EQUIPMENT SERVICE TEMPERATURE, F7) C680 253 0143 READ(IR, *)T(1) C680 255 C680 255 C MAINLINE CALCULATING ROUTINE C680 257 C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C680 259 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 262 0144 THKTOT=0.0 C680 262 C680 262 0145 D0 200 I=1, NLAYER C680 262 C680 262 C C C680 263 C680 264 C TDELT=T(1)-TAMB C680 264 C680 264 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
C C680 247 0137 144 WRITE(IW, 145) C680 248 0138 145 FORMAT(* MATERIAL CODE OR THICKNESS IS OUT OF RANGE. */) C680 249 0139 GO TO 142 C680 250 C680 251 0140 151 CONTINUE C680 252 0141 170 WRITE(IW, 171) C680 253 0142 171 FORMAT(* ENTER EQUIPMENT SERVICE TEMPERATURE, F*) C680 254 0143 READ(IR, *)T(1) C680 255 C C MAINLINE CALCULATING ROUTINE C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 258 C C C680 252 C D0 200 I=1, NLAYER C680 262 C THETOT=THKTOT+THK(I) C680 262 C C C680 264 C144 D0 211 I=1, NLAYER C680 265 <td></td> <td></td> <td></td> <td>C680</td> <td>246</td>				C680	246
0137 144 WRITE(IW, 145) C680 248 0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE. '/) C680 250 0139 GO TO 142 C680 251 C C680 252 0140 151 CONTINUE C680 253 C C680 253 0142 170 WRITE(IW, 171) C680 253 C C680 254 0143 READ(IR, *)T(1) C680 255 C C680 255 C MAINLINE CALCULATING ROUTINE C680 256 C C680 257 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 258 C C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 258 C6 C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 264 264 264 264 264 264 264 264 264 264 264 264 266		C			
0138 145 FORMAT(' MATERIAL CODE OR THICKNESS IS OUT OF RANGE '/) C680 249 0139 60 TO 142 C680 251 0140 151 CONTINUE C680 252 0141 170 WRITE(IW, 171) C680 253 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F') C680 254 0143 READ(IR,*)T(1) C680 255 C 0143 READ(IR,*)T(1) C680 257 C 0143 READ(IR,*)T(1) C680 257 C 0143 READ(IR,*)T(1) C680 258 C 0144 THK CALCULATING ROUTINE C680 257 C 0144 THKTOT=0.0 C680 258 C 0144 THKTOT=0.0 C680 261 C680 262 0145 D0 200 I=1, NLAYER C680 262 C680 262 0144 THKTOT=THKTOT+THK(I) C680 263 C680 264 0145 D0 211 I=1, NLAYER C680 264 C680 264 0147 TDELT=T(1)-TAMB C680 264 C680 264 0148 D0 211 I	0137		WRITE(IW, 145)	0680	248
0139 G0 T0 142 C680 250 0140 151 CONTINUE C680 251 C C680 252 C680 253 0141 170 WRITE(IW, 171) C680 253 0142 171 FORMAT(7 ENTER EQUIPMENT SERVICE TEMPERATURE, F7) C680 254 0143 READ(IR, *)T(1) C680 255 C C MAINLINE CALCULATING ROUTINE C680 257 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 257 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C UNITOT=0.0 C680 260 0144 THKT0T=0.0 C680 262 0145 D0 200 I=1; NLAYER C680 262 C C C680 264 0144 THKT0T=THKCOT+THK(I) C680 263 C C C680 264 0145 D0 200 I=1; NLAYER C680 264 0146 D0 211 I=1, NLAYER C680 264 0147 TDELT=T(1)-TAMS C680 265 0148 D0 211 I=1, NLAYER C680 264 0149<				0680	249
C C680 252 0141 170 WRITE(IW, 171) C680 253 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F') C680 254 0143 READ(IR, *)T(1) C680 255 C C MAINLINE CALCULATING ROUTINE C680 257 C C C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C C C680 259 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 260 0144 THKTOT=0.0 C680 261 0145 D0 200 I=1; NLAYER C680 262 C THKTOT=THK(TOT+THK(I) C680 262 C C C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1; NLAYER C680 265 0148 D0 211 I=1; NLAYER C680 265 0149 T(I+1)=T(I)-THK(I)/THKTOT+TDELT C680 265 0149 T(I+1)=T(I)-THK(I)/THKTOT+TDELT C680 268 C CONTINUE C680 268 C ICONTINUE <td></td> <td></td> <td></td> <td></td> <td></td>					
0141 170 WRITE(IW, 171) C680 253 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F') C680 254 0143 READ(IR, *)T(1) C680 255 C C C680 257 C MAINLINE CALCULATING ROUTINE C680 257 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 260 0144 THKTOT=0.0 C680 261 0145 D0 200 I=1, NLAYER C680 262 0146 THKTOT=THKTOT+THK(I) C680 264 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 265 0149 T(I+1)=T(I)-THK(I)/THKTOT+TDELT C680 265 0149 T(I+1)=T(I)-THK(I)/THKTOT+TDELT C680 268 0149 CONTINUE C680 268 0 I	0140	151	CONTINUE	C680	251
0141 170 WRITE(IW, 171) C680 253 0142 171 FORMAT(' ENTER EQUIPMENT SERVICE TEMPERATURE, F') C680 254 0143 READ(IR, *)T(1) C680 255 C C C680 257 C MAINLINE CALCULATING ROUTINE C680 257 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 260 0144 THKTOT=0.0 C680 261 261 0145 D0 200 T=1, NLAYER C680 262 0146 THKTOT=THKTOT=THK(I) C680 263 264 0147 TDELT=T(1)=TAMB C680 265 0148 D0 211 E=1, NLAYER C680 265 0149 T(1+1)=T(1)=THK(I)/THKTOT=TDELT C680 266 264 0149 CONTINUE C680 268 268<		C		0860	252
0143 READ(IR,*)T(1) C680 255 C C680 255 C MAINLINE CALCULATING ROUTINE C C680 255 C C680 264 D144 THKTOT=0.0 C680 262 D145 D0 200 I=1, NLAYER C680 262 C THETOT=THK(I) C680 263 C C C680 264 D147 TDELT=T(1)-TAMB C680 265 C148 D0 211 I=1, NLAYER C680 265 D148 D0 211 I=1, NLAYER C680 265 D149 T(I+1)=T(I)-THK(I)/THKTOT+TDELT C680 264 C <td< td=""><td>0141</td><td>170</td><td>WRITE(IW, 171)</td><td>C680</td><td>253</td></td<>	0141	170	WRITE(IW, 171)	C680	253
C C680 256 C MAINLINE CALCULATING ROUTINE C680 257 C C680 258 C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C C680 259 C680 259 C C680 260 C680 261 0144 THKTOT=0.0 C680 262 0145 D0 200 I=1, NLAYER C680 262 0145 D0 200 I=1, NLAYER C680 262 C C680 264 C680 263 C C680 264 C680 263 C C680 264 C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 265 0149 T(I+1)=T(I)-THK(I)/THKTOT+TDELT C680 265 0149 T(I+1)=T(I)-THK(I)/THKTOT+TDELT C680 267 0150 211 CONTINUE C680 268 C C11ERATIVE ARITHMETIC ROUTINE C680 270	0142	171	FORMAT(/ ENTER EQUIPMENT SERVICE TEMPERATURE, F/)	C680	254
C MAINLINE CALCULATING ROUTINE C680 257 C C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C C680 259 C680 259 C C680 251 C680 259 C C680 261 C680 261 0144 THKTOT=0.0 C680 262 0145 D0 200 1=1, NLAYER C680 262 0145 D0 200 1=1, NLAYER C680 263 C C680 261 C680 263 C C C680 263 C D0 201 1=1, NLAYER C680 263 C C C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 1=1, NLAYER C680 265 0149 T(1+1)=T(1)-THK(1)/THKTOT+TDELT C680 265 0149 CONTINUE C680 264 C CONTINUE C680 264 C CONTINUE C680 264 C ITERATIVE ARITHMETIC ROUTINE C680 270	0143		READ(IR, *)T(1)	0680	255
C C680 258 C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C C680 260 C680 260 0144 THKTOT=0.0 C680 261 0145 D0 200 I=1. NLAYER C680 262 0146 200 THKTOT=THKTOT+THK(I) C680 263 C C680 264 C680 263 C C680 264 C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1. NLAYER C680 265 0149 T(1+1)=T(I)-THK(I)/THKTOT+TDELT C680 265 0149 T(1+1)=T(I)-THK(I)/THKTOT+TDELT C680 267 0150 211 CONTINUE C680 268 C C C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270		C		0680	256
C ESTABLISH INITIAL INTERLAYER TEMPERATURES C680 259 C C680 260 260 0144 THKTOT=0.0 C680 261 0145 D0 200 1=1. NLAYER C680 262 0144 THKTOT=THKTOT+THK(I) C680 263 263 C C C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1. NLAYER C680 265 0149 T(1+1)=T(1)-THK(I)/THKTOT+TDELT C680 266 267 0150 211 CONTINUE C680 268 268 C CONTINUE C680 268 268 268 268 C ITERATIVE ARITHMETIC ROUTINE C680 270 210		C	MAINLINE CALCULATING ROUTINE	0680	257
C C680 260 0144 THKTOT=0.0 C680 261 0145 D0 200 I=1. NLAYER C680 262 0146 200 THKTOT=THKTOT+THK(I) C680 263 C C680 264 C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1. NLAYER C680 265 0149 T(1+1)=T(I)-THK(I)/THKTOT+TDELT C680 266 0149 T(1+1)=T(I)-THK(I)/THKTOT+TDELT C680 267 0150 211 CONTINUE C680 268 C C680 269 C C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270		0		C680	258
0144 THKTOT=0.0 C680 261 0145 D0 200 I=1, NLAYER C680 262 0146 200 THKTOT=THKTOT+THK(I) C680 263 C C680 264 C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 265 0149 T(1+1)=T(I)-THK(I)/THKTOT+TDELT C680 267 0150 211 CONTINUE C680 268 C C680 269 C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270		£	ESTABLISH INITIAL INTERLAYER TEMPERATURES	0680	259
0145 D0 200 I=1, NLAYER C680 262 0146 200 THKTOT=THKTOT+THK(I) C680 263 0 C C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 266 0149 T(1+1)=T(I)-THK(I)/THKTOT+TDELT C680 267 0150 211 CONTINUE C680 268 C C680 269 C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270		C		C680	260
0146 200 THKTOT=THKTOT+THK(I) C680 263 C C680 264 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 266 0149 T(1+1)=T(I)-THK(I)/THKTOT*TDELT C680 267 0150 211 CONTINUE C680 268 C CONTINUE C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270	0144		THKTOT=0.0	C680	261
0146 200 THKTOT=THKTOT+THK(I) C680 263 C C680 264 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 266 0149 T(1+1)=T(I)-THK(I)/THKTOT+TDELT C680 267 0150 211 CONTINUE C680 268 C CONTINUE C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270	0145		D0 200 I=1, NLAYER	C680	262
C C680 264 0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 266 0149 T(1+1)=T(1)-THK(1)/THKT0T*TDELT C680 267 0150 211 CONTINUE C680 268 C C680 269 268 269 C ITERATIVE ARITHMETIC ROUTINE C680 270	0146	200		C680	263
0147 TDELT=T(1)-TAMB C680 265 0148 D0 211 I=1, NLAYER C680 266 0149 T(1+1)=T(1)-THK(1)/THKT0T*TDELT C680 267 0150 211 CONTINUE C680 268 C C680 269 C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270		C		C680	264
0148 D0 211 I=1, NLAYER C680 266 0149 T(I+1)=T(I)-THK(I)/THKTOT*TDELT C680 267 0150 211 CONTINUE C680 268 C C680 269 268 269 C ITERATIVE ARITHMETIC ROUTINE C680 270	0147		TDELT=T(1)-TAMB		
0149 T(I+1)=T(I)-THK(I)/THKT0T*TDELT C680 267 0150 211 CONTINUE C680 268 C C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270					
0150 211 CONTINUE C680 268 C C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270					
C C680 269 C ITERATIVE ARITHMETIC ROUTINE C680 270		211			
C ITERATIVE ARITHMETIC ROUTINE C680 270		C			
		C	ITERATIVE ARITHMETIC ROUTINE	C680	270
			FIG. 7 (continued)		

ambient input conditions and no time loss from interpolation of the reference tables.

9.5 Example 4—Multiple Layers:

9.5.1 Determine the heat loss and surface and interface temperatures of an insulated 4-in. (110-mm) pipe operating at 600°F (315°C), insulated with 3 in. (76 mm) of Type 1 material, 2-in. (51-mm) thick layer of Type 2 material and $1\frac{1}{2}$ -in. (13-mm) thick layer of Type 3 material at an ambient temperature of – 100°F (–73°C). The wind speed is 5 mph (3.2 m/s) and surface emittance is 0.9.

9.5.2 Referring to Figs. 10-12, to obtain the material properties, the required constants are:

9.5.2.1 Type 1 Material: a = 0.40 $b = 0.105 \times 10^{-3}$ $c = 0.286 \times 10^{-6}$ 9.5.2.2 Type 2 Material: a = -1.62 $b = 0.213 \times 10^{-2}$ 9.5.2.3 Type 3 Material: $a_1 = 0.201$ $b_1 = 0.39 \times 10^{-3}$ $a_2 = 0.182$ $b_2 = -0.39 \times 10^{-3}$ $a_3 = 0.141$ $b_3 = 0.37 \times 10^{-3}$ (a) Transition Temperatures for Type 3:

🚯 C 680

	Ĺ.		6680	.771
0151	220	TS=T(NLAYER+1)	0680	
0152		IF (SURF. GT. 0) GO TO 222	C680	
0154	771	CALL_SURCOF (4. , TS, TAMB, EMISS, WIND, NOR, RS, 2. 0)	0680	
0155		SURFC=1. /RS	£680	
0156		60 70 230		
0157	222	RS=1. /SURF	0680	
0158	~~~	SURFC=SURF	C680	
0100	C	Sold C-Sold	0680	
	č		C680	
	ĉ		0680	
0159	230	CALL KCURVE(NLAYER, MAT, INSK, T, K)	0680	
0160	200	RSUM=RS	0680	
0100	С	noon-no	0680	
0161	0	DO 233 I=1, NLAYER	0680	
0162		IF(K(I), GT, 0, 01) G0 T0 232	0680	
0164		WRITE(IW, 231)I	C680	
0165	221		0680	
0100	201	FORMAT(1 ************************************		
			0680	
		<pre>#15%, 'CHECK YOUR INFUT VALUES', /20%, 'PROGRAM TERMINATED', / *'***********************************</pre>	C680	
0166		GO TO 299		
A100	C	00 10 277	0680	
0167	232	R(I)=THK(I)/K(I)	C680	
0168	101	RSUM=RSUM+R(I)	0680	
0169	233	CONTINUE	C680	
0107	200 C		0680	
0170	C		0680	
0170		Q=(T(1)-TAMB)/RSUM TSUM=0	0680	
0171			0680	
		DO 234 I=1, NLAYER	0680	
0173 0174			6680	
		TSUM=TSUM+ABS(T(I+1)-TINT)	0680	
0175	204	T(I+1)≃TINT CONTINUE	0680	
0176	234	CONTINUE	0680	
0177	e	IF (TSUM.GT.0.1) GO TO 220	C680	
	c C		0680	
			0680	
	C C	OUTPUT ROUTINE	C680	
	с С		0680	
0179	ι.		C680	
0179	240	WRITE(IP, 240)TITLE	0680	
0100	240 C	FORMAT((1/)/////15A4)	0680	
0181	U.		0680	
0181	241	WRITE(IP,241)DATE FORMAT(// /,15A4)	0680	
0102		FURNH((/ 510H4)	0680	
6100	C		0680	
0183	242	WRITE(IP, 242) EXPMAT(// HEAT FLOW AND CUDEACE TEMPERATURES OF INCULATED FOUNDER	C680	
0184	2 4 2	FORMAT(// HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED EQUIPME)		
	c	*T PER ASTM C-68077)	0680	
0105	C	UDITE(10 242)	0830	
0185	240	WRITE(IP, 243) FORMAT// THEOMON CONDUCTIVITY NO. MEAN TEMPERATURE CONATTONO NOED	C680	
0186	243	FORMAT(1 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED		
	c	*IN THIS ANALYSIS: //)	C680	
	С		0890	324
		FIG 7 (continued)		

FIG. 7 (continued)

 $TL = -25^{\circ}F (-32^{\circ}C)$ $TU = 50^{\circ}F (10^{\circ}C)$

9.5.3 The interactive communication record and calculated results are shown in Fig. 16.

10. Report

10.1 The results of calculations performed in accordance with this practice may be used as design data for specific job conditions, or may be used in general form to represent the performance of a particular product or system. When the results will be used for comparison of performance of similar products, it is recommended that reference be made to the specific constants used in the calculations. These references should include:

10.1.1 Name and other identification of products or components,

10.1.2 Identification of the nominal pipe size or surface insulated, and its geometric orientation,

10.1.3 The surface temperature of the pipe or surface,

10.1.4 The equations and constants selected for the thermal conductivity versus mean temperature relationship,

🕼 C 680

0187		DO 251 J=1, NLAYER	C680 325
0188		I=MAT(J)	C680 326
	C		C680 327
0189		IF(INSK(I, 1), GT. 2.5) GO TO 247	C680 328
0191		IF(INSK(L.1), GT. 1, 5) GO TO 245	C680 329
	C		C680 330
0193		WRITE(IP, 244)INSK(I, 2), INSK(I, 3), INSK(I, 4)	C680 331
0194	244	FORMAT(TYPE 1 MATERIAL: K=1, F6. 3, 1 +1, E10. 3, 1 * T +1, E10. 3	
		*/ * T**2//)	C680 333
0195		GO TO 251	C680 334 C680 335
A101	0.00	NETTER OF ANSWER OF THERE A	C680 335
0196 0197	245	WRITE(IP, 246)INSK(I, 2), INSK(I, 3) FORMAT(/ TYPE 2 MATERIAL: K= EXP(/,F7, 4, / +/,E10, 3, / * T)//)	
0197	246	60 TO 251	C680 338
0170	C	00 10 201	C680 339
0199	247	<pre>WRITE(IP, 248)INSK(I, 2), INSK(I, 3), INSK(I, 4)</pre>	C680 340
	248	FORMAT(
	2.00	* T <', F6. 1)	C680 342
0201		WRITE(IP, 249) INSK(I, 5), INSK(I, 6), INSK(I, 4), INSK(I, 7)	C680 3 4 3
0202	249	FORMAT(7 K=1, F5, 3, 7 + (1, F9, 6, 7) * T FOR	′C680_3 44
		*, F6, 1, 1 < T <1, F6, 1)	C680 345
0203		WRITE(IP, 250)INSK(I, 8), INSK(I, 9), INSK(I, 7)	C680 346
0204	250	FORMAT(/ K=1, F5, 3, 1 + (1, F9, 6, 1) * T FOR	10680-347
		*, F6. 1, (< T'/)	C680 3 4 8
	С		C680 349
0205	251	CONTINUE	C680 350
	C		C680 351
0206		WRITE(IP, 254)T(1)	C680 352
0207	254		C680 353
0208	OFF		C680 354 C680 355
0209	255 C	FORMAT(/ AMBIENT TEMPERATURE, F /, 7X, F5. 0/)	C680 335
0210	L	IF(EMISS.LT. 0. 0) G0 T0 262	C680 336 C680 357
0210		WRITE(IP, 260)EMISS	C680 358
0212	260	FORMAT(/ EMITTANCE / 6X, F5. 2)	C680 359
0214	200		C680 360
0215	261	FORMAT(/ WIND SPEED, MPH /, 7X, F5. 1)	C680 361
	C		C680 362
0216	262	WRITE(IP, 263)SURFC	C680 363
0217	263	FORMAT (/ SURFACE COEF, USED, BTU/HR, SF, F / 5X, F6, 2/)	C680 364
	C		C680 365
0218	270	WRITE(IP, 271)Q	0680 366
0219	271	FORMAT(1 TOTAL HEAT FLUX) BTU/HR. SF. 7 (7 F10, 17)	C680 367
	0		C680 368
0220		WRITE(IP, 280)	C680 369
0221	280	FORMAT(LAYER MATERIAL INSULATION CONDUCTIVITY, RESISTANC	
		*, TEMPERATURE, F ⁽)	C680 371
0222	004	WRITE(IP, 281)	C680 372
0223	281	FORMAT(/ NO. NO. THICKNESS BTU. IN/HR. SF. F HR. SF. F/B	
0224		+U INSIDE OUTSIDE//) D0 283 I=1,NLAYER	C680 374 C680 375
0225		WRITE(IP,282)I, MAT(I), THK(I), K(I), R(I), T(I), T(I+1)	C680 375
0226	787	FORMAT(14, 19, F14, 2, F14, 3, F15, 2, F13, 2, F10, 2)	C680 377
0227		CONTINUE	C680 378
		FIG. 7 (continued)	
	<u> </u>		0100 070
0220	С	UDITE/IL 200)	C680 379 C680 380
0228 0229	290	WRITE(IW, 290) FORMAT(/// DO YOU WANT TO RE-RUN THIS PROGRAM WITH A DIFFERENT TH	
V227	270	*CKNESS, '/' INSULATION OR LAYER SCHEDULE. '/' ENTER & FOR NO'/'	C680 382
		*1 FOR YES'/)	C680 383
0230		READ(IR, *)KANS	C680 384
0231		IF (KANS. NE. 0) GO TO 129	C680 385
	С		0680 386
0233	299	CALL EXIT	C680 387
0234		END	0680 388
	С	***************************************	
	С		C680 390
		FIG. 7 (continued)	

	•		
С	LAST REVISION MADE ON 8/30/83	0860	1
C	PROGRAM C680P	0860	2
C	ASTM C-680-78 COMPUTER PROGRAM	C680	3
C	THIS PROGRAM COMPUTES THE THERMAL PERFORMANCE OF A MULTI-	C680	4
С	LAYERED PIPE INSULATION SYSTEM. HEAT TRANSFER EQUATIONS ARE TAKEN	0860	5
C	FROM MACADAMS: "HEAT TRANSFER". THE PROGRAM IS INTENDED FOR USE ON	C680	6
C	AN INTERACTIVE TERMINAL CONTROLLED BY A TIME-SHARE COMPUTER FOR	C680	7
C	INFORMATION INPUT	C680	8
C	THE INSULATION SYSTEM IS INTENDED FOR USE ON A STANDARD	C680	9
Ċ	IRON PIPE. THE NOMINAL PIPE SIZE SPECIFIED ON INPUT WILL BE	C680	10
Ċ	CHECKED AGAINST THE LIST OF VALID PIPE SIZES IN ASTM C 585-76.	C680	
Ċ	UP TO 7 LAYERS OF INSULATION MAY BE SPECIFIED FOR THE	C680	12
ċ	INSULATION SYSTEM BEING ANALYZED. THE ACTUAL INSULATION THICKNESS		13
Ċ	OF EACH LAYER IS ASSIGNED IN COMPLIANCE WITH ASTM C 585-76.	C680	14
ē	ILLEGAL ENTRIES CAUSE LOOPING BACK TO THE PROPER INPUT POINT.	C680	15
Ċ	TEN DIFFERENT INSULATION MATERIALS MAY BE SPECIFIED WITH	C680	16
ĉ	DIFFERENT K-MEAN TEMPERATURE RELATIONSHIPS. PARAMETERS FOR THESE	C680	17
ċ	CURVES ARE USER-SUPPLIED WITH NO DEFAULT NUMBERS SUPPLIED BY THE	C680	18
Ĉ	PROGRAM. GROSS CHECKS ARE MADE OF THE REASONABLENESS OF THESE	C680	19
č	CURVES COMPARED TO TYPICAL INSULATION MATERIALS. CORRECTED VALUES		20
č	MAY BE ENTERED FOLLOWING AN ERROR MESSAGE.	C680	21
č	THE SURFACE COEFFICIENT MAY BE INPUT OR THE SURFACE	C680	22
č	EMITTANCE AND WIND SPEED MAY BE GIVEN, WHICH WILL CAUSE THE	C680	23
č	SURFACE COEFFICIENT TO BE CALCULATED.	C680	23 24
Č	SOW HE COLLETION TO BE CHECKENTED.	C680	25
C	VARIABLES USED IN THE MAINLINE PART OF THIS PROGRAM-	C680	26
č	VHATHDLES USED IN THE PHINEIRE FART OF THIS FROMMET"	C680	
ĉ	DATE = DATE	C680	27 28
C	DIA = OUTER DIAMETER OF THE INSULATION SYSTEM, FT.	C680	26 29
c	DIAIN(I) = INSIDE DIAMETER OF INSULATION LAYER I, INCHES.	C680	30
Ċ	NOTE THAT DIAIN(1)=THE ACTUAL OUTSIDE DIAMETER		
c	OF THE SERVICE PIPE CALLED FOR BY DIAPIP.	C680	31
c	DIAOUT(I) = OUTSIDE DIAMETER OF INSULATION LAYER I, INCHES.	£680	32 33
C	NOTE THAT DIADUT = DIAIN OF THE NEXT LAYER.	C680 C680	33 34
C	DIAPIP = NOMINAL IRON PIPE SIZE OF THE PIPE IN SERVICE.	C680	
C	EMISS = SURFACE EMITTANCE OF THE INSULATION SYSTEM.		35
Č		0863	36
č	ERR = ERROR SIGNAL RETURNED TO THE MAINLINE PROGRAM FOR AN ILLEGAL ENTRY IN THE THICKNESS SCHEDULE.		37
c	I = INDEX VARIABLE.	C680	38
c	INSIZ(I) = NOMINAL INSULATION SIZE OF LAYER I.	C680	39
C	INSILL'I) = INSULATION K-CURVE PARAMETER ARRAY.	C680	40
C		0680	41
c		C680	42
C	IR = SELECT CODE FOR TERMINAL USED FOR DATA INPUT.	0860	43
C	IW = SELECT CODE FOR TERMINAL DISPLAYING INPUT	C680	44
c	DIRECTIONS. - THERMAL COMPLETITUTY OF LAMER 1. RELIAN (NO. OF IT	C680	45
	K(I) = THERMAL CONDUCTIVITY OF LAYER I, BTU. IN. /HR. SF. F.		46
C	M = TEMPORARY INPUT VARIABLE USED FOR MATERIAL CODE.		
C	MAT(I) = MATERIAL CODE OF LAYER I.	C680	
C	NLAYER = NUMBER OF INSULATION LAYERS.		49
C	NOR = ORIENTATION FACTOR OF PIPE:	C680	
C	1 = VERTICAL PIPE		51
C	2 = HORIZONTAL PIPE.		52
C	PIPSIZ = ARRAY OF IRON PIPE SIZES PER ASTM C 585-76.	C680	
C	Q = RATE OF HEAT FLOW THROUGH THE INSULATION SYSTEM,	C680	54

FIG. 8 Computer Listing—Program C 680P—Thermal Performance of Multilayered Cylindrical Insulation Systems

10.1.5 The ambient temperature and humidity, if applicable, 10.1.6 The surface coefficient and condition of surface heat transfer,

10.1.6.1 If obtained from published information, the source and limitations,

10.1.6.2 If calculated or measured, the method and significant parameters such as emittances, fluid velocity, etc.,

10.1.7 The resulting outer surface temperature, and

10.1.8 The resulting heat loss or gain.

10.2 Either tabular or graphical representation of the results of the calculations may be used. No attempt is made to recommend the format of this presentation of results.

11. Precision and Bias

11.1 The precision of this practice is a function of the computer equipment used to generate the calculational results. In many typical computers normally used, seven significant digits are resident in the computer for calculations. Adjustments to this level can be made through the use of "Double Precision," however, for the intended purpose of this practice, standard levels of precision are adequate. The formatting of the output results, however, has been structured to provide a resolution of 0.1 % for the typical expected levels of heat flux and within 0.1°F (0.05°C) for surface temperatures.

(IIII) C 680

		4 .			
	C	BTU. /HR. SF.	C	.680	55
	С	QLF = RATE OF HEAT FLOW THROUGH THE INSULATION SY			56
	Ũ	BTU. /HR. LF.		680	57
	С	R(I) = THERMAL RESISTANCE OF LAYER I, HR. SF. F/BTU.		680	58
	C	RS = THERMAL RESISTANCE OF SURFACE, HR. SF. F/BTU.		680	59
	6	RSUM = THERMAL RESISTANCE OF TOTAL SYSTEM, HR SF. F			60
	С	SURF = THERMAL SURFACE COEFFICIENT, BTU. /HR. SF. F.		680	61
	0	SURFC = COMPUTED SURFACE COEFFICIENT, BTU, /HR, SF, F,		680	62
	£	T(I) = INNER TEMPERATURE OF LAYER I, F. THE OUTER		680	63
	C	TEMPERATURE OF LAYER I IS THE INNER TEMPERA		680	64
	C	OF THE NEXT LAYER.		680	65
	C	TAMB = AMBIENT AIR TEMPERATURE, F.	C	680	66
	C	TDELT = TEMPERATURE DIFFERENCE BETWEEN PIPE TEMPERA	ATURE C	680	67
	C	AND AMBIENT TEMPERATURE, F.	C	680	68
	С	THK(I) = NOMINAL THICKNESS OF INSULATION LAYER I, IN	ICHES. C	680	69
	С	THKTOT = TOTAL THICKNESS OF INSULATION SYSTEM, INCHE	2S. C	680	70
	С	TINT = INTERMEDIATE LAYER TEMPERATURE	C	680	71
	C	TITLE = TITLE OF THE ANALYSIS.		680	72
	С	TL = LOWER TEMPERATURE BOUNDARY FOR MATERIAL COD	Ж ЕЗ . С	680	73
	e	TP = SURFACE TEMPERATURE OF THE INSULATION SYSTE	316 F. C	:680	74
	C	TSUM = TEST CRITERION FOR THERMAL STABILITY.	-	680	75
	c	TU = UPPER TEMPERATURE BOUNDARY FOR MATERIAL COL	¥E3. €	680	76
	C .	WIND = WIND VELOCITY, MILES PER HOUR.		:680	77
	C .	XK1 = CALCULATED THERMAL CONDUCTIVITY AT 100F.		680	78
	6	XK3 = CALCULATED THERMAL CONDUCTIVITY AT 300F.		:680	79
	C	XK6 = CALCULATED THERMAL CONDUCTIVITY AT 600F.		680	80
0004	C	DINENDIAN TITLESSES DATESSES		0883	81
0001		DIMENSION TITLE(15), DATE(15)		680	82
0002 0003		DIMENSION THK(7), DIAIN(8), DIAOUT(7), PIPSIZ(13)		:680	83
0003		DIMENSION T(8),R(7),MAT(7)		:680	84
0004	с	REAL K(7), INSIZ(7), INSK(10,9)		:680	85 01
0005	C	TATA PIPETZ / 5 75 1 1 25 1 5 2 2 5 2 5 4 4 5 5 5 7		2680	86 07
0003	с	DATA PIPSIZ/, 5, , 75, 1, , 1, 25, 1, 5, 2, , 2, 5, 3, , 3, 5, 4, , 4, 5, 5, , 5, 5/		0880	87 00
	c	THE FOLLOWING 3 COMMANDS DEFINE THE SELECT CODES FOR		.680 .680	88 89
	č	THE TERMINALS USED FOR INPUT AND INSTRUCTION DISPLAY,		.680 .680	07 90
	č	AND THE PRINTER USED FOR SUMMARY REPORT OUTPUT, CONTACT		.680	91
	č	YOUR COMPUTER CENTER FOR EXACT FORMAT.		.680	92
	ē.			680	93
0006		IR=7		680	94
0007		IW=7		680	95
0008		IP=6		.680	96
	C			680	97
0009		DO 11 I=1.10	C	680	98
0010		DO 10 J=1,9	C	680	99
0011		INSK(I,J)=0	C	680	100
0012	10	CONTINUE	C	680	101
0013	11	CONTINUE	C	0360	102
	C		C	.680	103
0014		WRITE(IW.20)		:680	
0015	20	FORMAT(ASTM C-680 RECOMMENDED PRACTICE FOR THE DETERMINAT)			
		*HEAT FLOW AND SURFACE // TEMPERATURES OF MULTIPLE-LAYERED IN			
	-	*D PIPE FOR AN INTERACTIVE INPUT/OUTPUT/// COMPUTER TERMINAL.		680	
	С		C	:680	108
		FIG 8 (continued)			

FIG. 8 (continued)

11.2 Many factors influence the accuracy of a calculational procedure used for predicting heat flux results. These factors include computer resolution, accuracy of input data, and the applicability of the assumptions used in the method for the system under study. The system of mathematical equations used in this analysis has been accepted as applicable for most systems normally insulated with bulk-type insulations. Applicability of this practice to systems having irregular shapes, discontinuities and other variations from the one-dimensional heat transfer assumptions should be handled on an individual basis by professional engineers familiar with those systems.

11.3 The computer resolution effect on accuracy is only

significant if the level of precision is less than that discussed in 11.1. Computers in use today are accurate in that they will reproduce the calculation results to the resolution required if identical input data is used.

11.4 The most significant factor influencing the accuracy claims is the accuracy of the input thermal conductivity data. The accuracy of applicability of these data is derived from two factors. The first is the accuracy of the test method used to generate the data. Since the test methods used to supply these data are typically Test Methods C 177, C 335, or C 518 the reports should contain some statement of test data accuracy. The remaining factors influencing the accuracy are the inherent

🚯 C 680

0016			680	
0017	30		:680	
0018	·		680	
0019	31		680	
	С		680	
0020			680	
0021	40		680	
0022			680	
0023	41		:680	
	С		2680	
0024			680	
0025	50		680	
0026			0883	
	C		:680	
0027			2680	
0028			0840	
0029	60	FORMAT(1 TYPICAL SURFACE COEFFICIENT IS 1.65.171 IF COEFFICIENT ISC		
		* TO BE CALCULATED FROM EMITTANCE AND WIND SPEED ENTER 01/11 OTHERWIC		
			:680	
0030			:680	
0031		IF (SURF. GT. 0. 0) GO TO 70	.680	129
0033			0880	
0034	61	FORMAT(/ TYPICAL EMITTANCE IS 0.9.77 / TYPICAL WIND SPEED IS 0 MPH. 0	.680	131
		*// ENTER EMITTANCE, WIND SPEED, AND PIPE ORIENTATION CODE: 1/ 5X/C		
			:680	
0035		READ(IR,*)EMISS, WIND, NOR C	0862	134
	С	(0863	135
0036	70	WRITE(IW, 71) C	086	136
0037	71	FORMAT(' UP TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIO	:680	137
		*ONS MAY BE USED. 1711 THEY ARE OF 3 TYPES. THE TYPES ARE: 1711 C	2680	138
		*/ MATERIAL CODE 1 - K = A + B * T + C * T**2// 0	0860	139
		*′ MATERIAL CODE 2 - K = EXP(A + B * T)′) 0	0860	140
0038		WRITE(IW, 72)	680	141
0039	72	FORMAT(5X, 'MATERIAL CODE 3 + K = A1 + B1 + T, FOR T < TL'/ C	680	142
		*' K = A2 + B2 * T, FOR TL < T < TU'/ C	2680	143
		*′ K = A3 + B3 * T, FOR TU < T'/' WHERE A, BO	680	144
		*, AND C ARE THE COEFFICIENTS OF THE EQUATIONS, AND T IS THE MEAN //C	:680	145
		* TEMPERATURE () C	0860	146
	6	(680	147
0040		I=0 ()	680	148
0041	73	I=I+1 (:680	149
	C	C	086	150
0042		WRITE(IW, 74)I	0860	151
0043	74	FORMAT(/ ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULAC	:680	152
		*TION NO. (713)	680	153
0044	75	CONTINUE	0830	154
0045		READ(IR,*)M	680	155
0046			:680	
	С	-	2680	
0047	80		680	
0048	-		0863	
0049	81		2680	
0050			:680	
0051			680	
		FIG. 8 (continued)		

variability of the product and the variability of the installation practices. If the product variability is large or the installation is poor, or both, serious differences might exist between measured performance and predicted performance from using this practice.

11.5 When concern exists with the accuracy of the input test data, the recommended practice to evaluate the impact of possible errors is to repeat the calculation for the range of the uncertainty of the variable. This process yields a range in the desired output variable for a given uncertainty in the input

variable uncertainty. Repeating this procedure for all the input variables would yield a measure of the contribution of each to the overall uncertainty. Several methods exist for the combination of these effects; however, the most commonly used is to take the square root of the sum of the squares of the percentage errors induced by each variable's uncertainty. Eq 32 (8) gives the expression in mathematical form.

$$\frac{S}{R} = \left(\sum_{i=1}^{n} \left(\left(\frac{\partial R}{\partial x_i} \right) \Delta x_i \right)^2 \right)^{1/2}$$
(32)

		41		
0052		XK6=INSK(1,2)+INSK(1,3)*600.+INSK(1,4)*600.**2	C680	163
0053		IF(ABS((XK3-, 46)/, 46), GT, 0, 15) G0 T0 82	C680	164
0055		IF(ABS((XK6 57)/. 57), LT. 0. 15) GO TO 73	C680	165
0057	82	WRITE(IW, 83)XK3,XK6	C680	166
0058	83	FORMAT(' K-CURVE IS NOT IN NORMAL RANGE'/' K AT 300F=', F6. 3/,	10680	167
		* K AT 600F =1, F6. 3/, 1 ENTER 1 TO RE-ENTER K DATA, OTHERWISE 0	′C680	168
		*)	6680	169
0059		READ(IR, *)NN	C680	170
0060		IF(NN.EQ.1) GO TO 80	C680	171
	C		C680	172
0062		GO TO 73	C680	173
	С		C680	
0063	90	IF (M-3) 100, 110, 120	C680	
	C		C680	
0064	100	WRITE(IW, 101)	C680	
0065		INSK(1,1)=2.0 FORMAT(1 ENTER A, B FOR MATERIAL CODE 2.1) READ(10.4)INSK(1.2).INSK(1.3)	C680	
0066	101	Format(' Enter A, B for Material Code 2.')	C680	
0067			C680	
0068		ARG1=INSK(I, 2)+INSK(I, 3)*100.	C680	
0069		ARG3=INSK(1,2)+INSK(1,3)#300.	C680	
0070		IF (ARG1, GT, -200, 0, AND, ARG3, GT, -200, 0) GD TO 103	C680	
0072	100	WRITE(IW, 102)	C680	
0073	102	FORMAT(' INTERMEDIATE COMPUTATIONS EXCEED VALID NUMBER RANGE '/	C680	
0074		*' CHECK THE COEFFICIENTS FOR THIS MATERIAL AND RE-ENTER. ')	C680	
0074	~	GO TO 100	C680	
0075	C 103	Y/4_EVD(AD0())	C680	
	103	XK1=EXP(ARG1)	C680	
0076 0077		XK3=EXP(ARG3) ICADC//XK1 24E) / 24E) CT O 1E) CO TO 104	C680	
0079		IF(ABS((XK1-, 245)/, 245), GT, 0, 15) G0 T0 104 IF(ABS((XK3-, 375)/, 375), LT, 0, 15) G0 T0 73	C680	
0077	104	· · · · · · · · · · · · · · · · · · ·	C680 C680	
0082			C680	
0002	105	*F6. 3/ K AT 300F = 5 F6. 3/5 ENTER 1 TO RE-ENTER K DATA; UTHER		
		*ISE 0'/)	0863	
0083		READ(IR, *)NN	C680	
0084		IF(NN, EQ. 1) GO TO 100	C680	
0004	С	11 VIII. La. 17 00 10 100	C680	
0086	U	GO TO 73	C680	
~~~~	С	00 10 /3	C680	
0087	110	WRITE(IW,111)	C680	
0088	110	INSK(1,1)=3.0	C680	
0089	111	FORMAT(' FOR MATERIAL TYPE 3: '/' ENTER A1, B1, TL')	C680	
0090	•••	READ(IR, *) INSK(I, 2), INSK(I, 3), INSK(I, 4)	C680	
0091		WRITE(IW, 112)	C680	
0092	112	FORMAT(' ENTER A2, B2, TU')	C680	
0093		READ(IR, *)INSK(I, 5), INSK(I, 6), INSK(I, 7)	C680	
0094		WRITE(IW, 113)	C680	
0095	113	FORMAT( / ENTER A3, B3 /)	C680	
0096		READ(IR, *)INSK(I, 8), INSK(I, 9)	C680	
0097		TL=(INSK(I,5)-INSK(I,2))/(INSK(I,3)-INSK(I,6))	C680	
0098		TU=(INSK(I,8)-INSK(I,5))/(INSK(I,6)-INSK(I,9))		213
0099		IF(ABS(TL-INSK(1,4)), GT, 5.) GO TO 114		214
0101		IF(ABS(TU-INSK(1,7)), LT. 5.) G0 T0 73		215
0103	114			216
		FIG. 8 (continued)		

where:

S = estimate of the probable error of the procedure,	S	= estimate of the probable error of the procedure,
------------------------------------------------------	---	----------------------------------------------------

R = result of the procedure,

 $x_i$  = *i*th variable in procedure,

- $\partial R / \partial x_i$  = change in result with respect to, change in ith variable,
- $\Delta x_i$  = uncertainty in value of variable, *i*, and
- n = total number of variables in procedure.

11.6 In summary, the use of this system of equations in this practice for design and specification of insulations systems since 1971 has demonstrated the applicability and useable accuracy of the procedure. Although general usage attests to

acceptance of the calculational procedures, the specific applicability should be defined for each insulation system installation at the time of its design.

11.7 Appendix X1 has been prepared by ASTM Subcommittee C16.30, Task Group 5.2, responsible for preparing this practice. The appendix provides a more complete discussion of the precision and bias expected when using C 680 in the analysis of operating systems. While much of that discussion is relevant to this practice, the errors associated with its application to operating systems is beyond the primary C 680 scope. Portions of this discussion, however, were used in developing

FIG. 8 (continued)

		1 (ALMERICE, 07 00 10 100	0000 241
0	)123	IF (NLAYER: LE. 7) GO TO 140	C680 242
C	)125 133	8 WRITE(IW, 134)	C680 243
C	0126 134	FORMAT( / NUMBER OF LAYERS IS OUT OF RANGE; REENTER ( )	C680 244
C	)127	GO TO 132	C680 245
	C		C680 246
0	)128 140	) WRITE(IW, 141)	C680 247
0	)129 141	FORMAT( / INSULATION THICKNESSES OF 1 INCH TO 4 INCHES CAN BE EN	FERC680 248
		+ED IN INCREMENTS OF 0.5 INCH. 171 ENTER LAYER INFORMATION FROM TH	Æ C680 249
		*PIPE SURFACE TO THE AMBIENT SURFACE //)	6680 250
	C		C680 251
0	)130	DO 151 I=1, NLAYER	C680 252
	131 142		C680 253
0	132 143	FORMAT( / ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS	F0C680 254
		*R LAYER NO. () I2)	C680 255
-	133	READ(IR,*)MAT(I),THK(I)	C680 256
0	134	IF(MAT(I), GT. 0. AND. MAT(I), LE. IM) GO TO 148	C680 257
	С		C680 258
0	136 144	WRITE(IW, 145)	C680 259
-	137 145	FORMAT( / MATERIAL CODE IS OUT OF RANGE; RE-ENTER DATA (/)	C680 260
0	138	GO TO 142	C680 261
	С		C680 262
	139 148		C680 263
	140	IF(THI, LT. 2.) GOTO 149	C680 264
	142	IF(THI.GT.8.) GOTO 149	C680 265
-	144	IF(THI.EQ.INT(THI)) GOTO 151	0680 266
-	146 149		C680 267
0	147 150	The state of the s	) TC680 268
		*HICKNESS()	C680 269

60T0 142

loss; pipe; thermal insulation

## 12. Keywords

12.1 block; computer program; heat flow; heat gain; heat

0148

the Precision and Bias statements included in Section 11.

# ∰ C 680

0104 115 FORMAT( / CALCULATED TEMPERATURE LIMITS DO NOT AGREE WITH THE VALUEC680 217 TL CALCULATED IS', F8. 2, 7 VS. 7, F8. 2/1

FORMAT( **** MATERIAL CODE OUT OF RANGE; RE-ENTER ****/)

FORMAT( ' ENTER NUMBER OF INSULATION LAYERS - MAXIMUM IS 7')

*CULATED IS1, F8. 2, 1 VS. 1, F8. 2/1 TO IGNORE THIS AND CONTINUE PROGRAC680 219 *M EXECUTION ENTER 01/11 TO SUBSTITUTE THE CALCULATED LIMITS FOR THEC680 220 * INPUT VALUES ENTER 1. 1/1 TO RE-ENTER ENTIRE DATA SET FOR THIS MATC680 221

TU CALC680 218

C680 222

C680 223

C680 224

0680 225

C680 226

C680 227

C680 228

C680 229

C680 230

C680 231

C680 232

0680 233

C680 234

C680 235

C680 236

C680 237

C680 238

C680 239

C680 240

C680 241

C680 270

*S ENTERED. 171

*ERIAL ENTER 27)

IF (M. EQ. 0) 60 TO 73

IF(M.EQ.2) GO TO 110

READ(IR, *)M

INSK(1, 4)=TL

INSK(1,7)=TU

WRITE(IW, 121)

WRITE(IW, 131)

READ(IR, *)NLAYER

IF (NLAYER, LE. 0) GO TO 133

GO TO 73

GO TO 75

IM=I-i

CONTINUE

С

С

C

C.

0113 120

0114 121

0116 130

0117 129

0118 131

0119 132

0120

0121

0105

0106

0108

0110

0111

0112

0115

0149 151 CONTINUE C680 271 0 C680 272 0150 160 WRITE(IW, 161) 6680 273 0151 161 FORMAT(' ENTER NOMINAL PIPE SIZE PER ASTM C-585') C680 274 0152 READ(IR, *)DIAPIP C680 275 0153 IF(DIAPIP. LT. 6) GOTO 162 C680 276 0155 IF(DIAPIP.EQ.INT(DIAPIP)) GOTO 170 C680 277 0157 GOT0 164 C680 278 0158 162 DO 163 I=1,13 C680 279 0159 IF(DIAPIP.EQ.PIPSIZ(I)) GOTO 170 C680 280 0161 163 CONTINUE 0680 281 0162 164 WRITE(IW, 165) C680 282 FORMAT(' IRON PIPE SIZE ENTERED IS NOT VALID; REENTER') 0163 165 0680 283 0164 GOTO 160 0680 284 С C680 285 0165 170 WRITE(1W, 171) C680 286 FORMAT(' ENTER PIPE SERVICE TEMPERATURE, F') 0166 171 C680 287 0167 READ(IR, *)T(1) 0680 288 Û 0680 289 C C680 290 С C680 291 0168 CALL SELECT (DIAPIP, NLAYER, THK, DIAIN, DIAOUT, ERR, INSIZ) C680 292 0169 IF (ERR. EQ. 0) GOTO 210 6680 293 0171 WRITE(IW, 200) C680 294 0172 200 FORMAT( / THICKNESS IS LESS THAN 1.5 IN. FOR INSULATION SIZE OVER 60680 295 * IN. DIAMETER: 1/5 / RE-ENTER THICKNESS DATA, 1/) 0680 296 0173 GO TO 140 C680 297 ¢ C680 298 С C680 299 С 0680 300 0174 210 THKTOT=(DIAOUT(NLAYER)-DIAIN(1))/2.0 0680 301 0175 TDELT=T(1)-TAMB 0680 302 0176 D0 211 I=1, NLAYER 0680 303 0177 T(I+1)=T(I)-THK(I)/THKTOT*TDELT C680 304 0178 211 CONTINUE 0680 305 С 0680-306 C C680 307 C C680 308 0179 DIA=DIAOUT(NLAYER)/12. 0680 309 0180 220 TS=T(NLAYER+1) C680 310 0181 IF (SURF. GT. 0) GOTO 222 0680 311 0183 221 CALL SURCOF (DIA, TS, TAMB, EMISS, WIND, NOR, RS, 1) 0680 312 0184 SURFC=1. /RS C680 313 0185 G0 T0 230 0680 314 0186 222 RS=1. /SURF 0680 315 0187 SURFC=SURF C680 316 Ĉ 0680 317 С 0680 318 С C680 319 0188 230 CALL KOURVE (NLAYER, MAT, INSK, T, K) 0680 320 0189 RSUM=RS 0680 321 0 0680 322 0190 DO 233 I=1, NLAYER 0680 323 0191 IF(K(1). GT. 0. 01) G0 T0 232 0680 324 FIG. 8 (continued)

0193	201		325
0194	231	FORMAT(' ************************************	
		* CONDUCTIVITY OF LEVER , 13, 15 LESS (ARM O. 01 ; / COOO *15X, 'CHECK YOUR INPUT VALUES', /20X, 'PROGRAM TERMINATED', / C680	
		*133, CHECK TOOK INFOT VML0ED 7/203, FROMHIT FERTINHTED 7/ COOK	
0195			330
01/0	С		331
0196	232		332
0197			333
0198	233		334
	c		335
0199		Q=(T(1)-TAMB)/RSUM C680	336
0200		TSUM=0 C680	337
0201		D0 234 I=1, NLAYER C680	338
0202		TINT=T(I)-@*R(I) C680	) 339
0203			340
0204			341
0205	234		) 342
0206			343
0208			344
	С		345
	С		346
	C		347
	C		348
	0		349
	C C		) 350
0209	L		) 352
0209	240		) 353
0210	240 C		) 354
0211	U		355
0212	241		356
VLIL	ĉ		357
0213	-	WRITE(IP, 242) C680	358
0214	242	FORMAT(// HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSC680	359
		*TEMS PER ASTM C-6801/) C68	360
	C	C680	361
0215		WRITE(IP, 243) C68	362
0216	243	FORMAT( / THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED C68	363
		*IN THIS ANALYSIS: (7) C68	364
	С		365
0217			) 366
0218			367
	С		368
0219			369
0221	~		370
0000	ι.		371
0223	744		372
022 <b>4</b>	244		) 373 ) 374
0225			) 374
VZZJ	C		) 375
0226	ں 245		) 377
0220			
V221	1.10	FIG. 8 (continued)	

∰ C 680 0228 GO TO 251 C680 379 C C680 380 0229 247 WRITE(IP, 248) INSK(I, 2), INSK(I, 3), INSK(I, 4) C680 381 0230 248 FORMAT( TYPE 3 MATERIAL: K=1, F5, 3, 1 + (1, F9, 6, 1) * T FOR C680 382 T (1) F6, 1) C680 383 ¥ 0231 WRITE(IP, 249)INSK(I, 5), INSK(I, 6), INSK(I, 4), INSK(I, 7) 0680 384 0232 249 FORMAT(/ K=1, F5, 3, 1 + (1, F9, 6, 1) * T F0R10680-385 *, F6, 1, 1 < T <1, F6, 1) C680 386 0233 WRITE(IP, 250) INSK(1, 8), INSK(1, 9), INSK(1, 7) C680 387 0234 250 FORMAT( / K=1/F5, 3/1 + (1/F9, 6/1) * T FOR10680, 388 */F6.1/1 < T1/1 C680 389 C C680 390 0235 251 CONTINUE 0680 391 С 0680 392 0236 WRITE(IP, 252)DIAPIP C680 393 0237 252 FORMAT( / NOMINAL IRON PIPE SIZE, IN. (, 16X, F6. 2) 0680 394 0238 WRITE(IP) 253) DIAIN(1) 0680 395 0239 253 FORMAT( / ACTUAL PIPE DIAMETER, IN. 1, 19X, F5. 3/) C680 396 £ 0680 397 0240 WRITE(IP, 254)T(1) 0680 398 0241 254 FORMAT( / PIPE SERVICE TEMPERATURE, F1, 18X, F5, 0) 0680 399 0242 WRITE(IP, 255)TAMB C680 400 0243 255 FORMAT( / AMBIENT TEMPERATURE, F1, 23X, F5, 07) C680 401 C680 402 С 0244 IF(EMISS.LT. 0. 0) 60 TO 262 C680 403 0246 C680 404 WRITE(IP, 260)EMISS 0247 260 FORMAT(1 EMITTANCE1, 34X, F6, 2) 0680 405 0248 WRITE(IP, 261)WIND C680 406 0249 261 FORMAT( / WIND SPEED, MPH /, 29X, F6. 1) C680 407 C680 408 Ç. 0250 262 WRITE(IP, 263)SURFC 0680 409 FIG. 8 (continued) 0251 263 FORMAT( / SURFACE COEFFICIENT USED, BTU/HR, SF, F /, 7X, F6, 2/) C680 410 Ū C680 411

0050				
0252	270	WRITE(IP, 271) QLF C690 412		
0253	271	FORMAT( / TOTAL HEAT FLUX, BTU/HR, LF, 5 / 12X, F10, 1/) C680, 413		
	C	C680 414		
0254		WRITE(IP, 280) C680 415		
0255	280	FORMAT( LAYER MATERIAL INSULATION CONDUCTIVITY, RESISTANCEC680 416		
		*, TEMPERATURE, F') C680 417		
0256		WRITE(IP, 281) C680 418		
0257	281	FORMAT( / NO. NO. SIZE BTU. IN/HR. SF. F. HR. SF. F/BTC680 419		
		*U INSIDE OUTSIDE //) C680 420		
0258		D0 283 I=1, NLAYER C680 421		
0259		WRITE(IP, 282) I, MAT(I), INSIZ(I), THK(I), K(I), R(I), T(I), T(I+1) C680 422		
0260	282	FORMAT(14, 19, F11, 2, 4 X4, F5, 2, F11, 3, F13, 2, F14, 2, F10, 2) C680, 423		
0261	283	CONTINUE C680 424		
	6	C680 425		
0262		WRITE(IŴ, 290) C680 426		
0263	290	FORMAT(/// DO YOU WANT TO RE-RUN THIS PROGRAM WITH A DIFFERENT THIC680 427		
		*CKNESS, // INSULATION, OR LAYER SCHEDULE?// ENTER 0 FOR NO//7X, /10680 428		
		* FOR YES. 1/) C680 429		
0264		READ(IR, *)KANS C680 430		
0265		IF (KANS. NE. 0) GOTO 129 C680 431		
	С	C680 432		
0267	299	CALL EXIT C680 433		
0267	277			
V200				
FIG. 8 (continued)				

# 働 C 680

	_				
	C	LAST REVISION MADE ON 8/3	30/83	0860	1
	С	PROGRAM SURCOF		C680	2
	C			C680	3
	C			C680	4
0001		SUBROUTINE SURCOF (DIA, TS.	, TAMB, ENIŞS, WIND, NOR, RS, NFORM)	C680	5
	C			0860	6
	С	THIS ROUTINE USES THE WIN	D SPEED, THE SURFACE EMISSIVITY, THE	C680	7
	С	SURFACE TEMPERATURE, AND	THE AMBIENT TEMPERATURE TO DETERMINE THE	C680	8
	C	THERMAL SURFACE COEFFICIE	NT FOR HEAT FLOW HORIZONTAL, DOWN, OR UP.	C680	9
	C	CALCULATIONS FOLLOW THE E	QUATIONS GIVEN IN MALLOY'S THERMAL	0680	
	С	INSULATION BASED UPON EQU		0863	11
	C			C680	12
	C	VARIABLES USED IN TH	IS ROUTINE-	0860	13
	C			C680	14
	C	DIA = SIGNIFIC	ANT INSULATION SYSTEM DIMENSION, FT.	0863	15
	C			C680	16
	C	HRAMB = PORTION (	OF SURFACE COEFFICIENT DUE TO RADIATION	0680	17
	C	EFFECT.		C680	
	С	HSAMB = PORTION (	OF SURFACE COEFFICIENT DUE TO CONVECTION	0863	19
	C	EFFECT.		0863	
	C	NFORM = INDEX DE		0680	
	C	1 -		0680	
	С	2 -		0860	
	С	Nor = Heat Flow		C680	
	C	1 -		C680	
	0		tenter de la construcción de	0860	
	0	3 -		C680	
	0	RS = SURFACE 1		C680	
	0			C680	
	C			C680	
	C	TAMB = AMBIENT /		C680	
	C	TS = SURFACE "	TEMPERATURE OF OUTER INSULATION LAYER, F	0860	32
	C			C680	
	C			0863	
	C			C680	
0002		TAIR=(TAMB+TS)/2. +459. 69		0860	
0003		ATDELT=ABS(TAMB-TS)		C680	
0004		IF (ATDELT, LE. 1, 0) ATDELT=:			38
	C			C680	
0006		IF (NFORM. EQ. 1) DX=DIA+12. (	)	C680	40
0008		IF (NFORM. EQ. 2) DX=24, 0		C680	-
	С			C680	42
0010		IF (NFORM EQ. 2) GO TO 150			43
0012		IF(DX. GT. 24.) DX=24.0			44
0014		IF(NOR. EQ. 1) COEF=1, 016			45
0016		IF(NOR. EQ. 2) COEF=1, 235		0680	46
0018		G0 TO 170		C680	
0019	150	IF (NOR. EQ. 1) COEF=1. 394		0680	
0021		IF (NOR. EQ. 2) COEF=0. 89		C680	. =
0023		IF (NOR. EQ. 3) COEF=1. 79		C680	
0025	170	CONTINUE		C680	
0026		HSAMB=COEF*DX**(-0.2)*TAIF		C680	
		*1. 277*WIND)		C680	
0027		1F(TAMB. NE. TS) G0 T0 480		C680	
•					

FIG. 9 Computer Listings—Support Subroutines: SURCOF-Surface Heat Flow Coefficient; KCURVE-Equivalent Thermal Conductivity; SELECT-Nesting Insulation Sizing for Pipes

働	C 680
---	-------

0029 0030 0031 0032 0033 0035	480 490	HRAMB=0.0 G0 T0 490 HRAMB=EMISS*0.1713E-08*((TAMB+459.69)**4-(TS+459.69)**4)/(TAMB-TS H=HSAMB+HRAMB IF(H_LE.0.0) H=1.61 RS=1./H	C680 C680 C680	55 56 57 58 59 60
0036 0037	С	RETURN END	C680 C680 C680	61 62 63
		FIG. 9 (continued)		
	С С С С	LAST REVISION MADE ON 11/13/81 PROGRAM KCURVE	C680 C680 C680 C680	1 2 3 4
0001	C	SUBROUTINE KCURVE (NLAYER, MAT, INSK, T, K)	C680 C680	5
	C C C C C	THIS ROUTINE CALCULATES THE THERMAL CONDUCTIVITY OF EACH LAYER OF INSULATION USING THE MATERIAL K-CURVE PARAMETERS AND INNER AND OUTER TEMPERATURES. THE ROUTINE IS EMPLOYED SUCCESSIVELY AS INNER AND OUTER TEMPERATURES ARE RECOMPUTED UNTIL A STABLE THERMAL EQUILIBRIUM IS REACHED.	C680 C680 C680 C680	7 8 9 10 11
	C C	VARIABLES USED IS THIS ROUTINE-	C680 C680 C680	12 13 14
	с с с	C = TEMPERATURE OF COLD SIDE OF INSULATION LAYER, F H = TEMPERATURE OF HOT SIDE OF INSULATION LAYER, F I = INDEX VARIABLE	C680	15 16 17 18
	С С С	INSK(I,J) = INSULATION K-CURVE PARAMETER ARRAY K(I) = THERMAL CONDUCTIVITY, K, OF LAYER I MAT(I) = MATERIAL NO. OF LAYER I	C680 C680	10 19 20
	С	NLAYER = NUMBER OF INSULATION LAYERS	C680 C680	21 22
	С С С	T(I) = INNER TEMPERATURE OF LAYER I, F. THE OUTER TEMPERATURE OF LAYER I IS THE INNER TEMPERATURE OF THE NEXT LAYER.		23 23 24
	C C	TL = LOWER TEMPERATURE BOUND OF REGION II OF MATERIAL TYPE 3.	C680 C680	25 25 26
	C C	TU = UPPER TEMPERATURE BOUND OF REGION II OF MATERIAL TYPE 3.	C680 C680	27 28
0002 0003	с с	DIMENSION T(8), MAT(7) REAL K(7), INSK(10,9)	C680 C680 C680 C680	29 30 31 32
0004 0005	U	DO 510 J=1, NLAYER I=MAT(J)	C680 C680	33 34
0006	С	IF(INSK(1,1), GE, 2, 5) G0 T0 502	C680 C680	35 36
8000	с	IF(INSK(I,1), GE, 1, 5) G0 T0 501	C680 C680	37 38
0010 0011	500	K(J)=INSK(I,2)+INSK(I,3)*((T(J)+T(J+1))/2.)+INSK(I,4)*(T(J)**3- *T(J+1)**3)/(3*(T(J)-T(J+1))) G0 T0 510	C680 C680 C680	39 40 41
0012	C 501	K(J)=(EXP(INSK(I,2)+INSK(I,3)*T(J+1))-EXP(INSK(I,2)+INSK(I,3)*T(J	0680	42
0012	901	*))/(INSK(I,3)*(T(J+1)-T(J))) 60 T0 510	C680 C680	44
0014	C 502	IF (T(J+1), GE, T(J)) GO TO 503	C680 C680	
0016		H=T(J) C=T(J+1)	C680 C680	
0018 0019	503	G0 T0 504 H=T(J+1)	C680 C680	51
0020 0021	C	C=T(J) TL=INSK(I,4)	C680 C680 C680	52 53 54

# 🕼 C 680

** .0		FIG 9 (continued)	0.000	00
0046		END	C680	°* 85
0045	010	RETURN	C680	- 84
0044	510	CONTINUE	C680	83
0010	C C	1107 2000 27 07 2000 27 77 407 077 Z.	C680	82
0043	509	K(J) = INSK(I, 8) + INSK(I, 9) + (H+C)/2	C680	81
VV72	С	00 10 310	C680	79 80
0042		60 TO 510	C680	78 79
0041	000	*+INSK(1,8)*(H-TU)+INSK(1,9)*(H**2-TU**2)/2. )/(H-C)	C680 C680	77
0041	508	K(J)=(INSK(I,5)*(TU+C)+INSK(I,6)*(TU+*2-C+*2)/2	C680 C680	76
0040	С		C680	75
0039		K(J)=INSK(I,5)+INSK(I,6)*(H+C)/2. G0 T0 510	C680	74
0037 0039		IF (H. GT. TU) GO TO 508	C680	73
0035	507	IF (C. GT. TU) GO TO 509	0680	72
0005	C	15 (0.07 TW) 00 TO 500	C680	71
0034	~	GO TO 510	C680	70
		*+INSK(I,8)*(H-TU)+INSK(I,9)*(H**2-TU**2)/2.)/(H-C)	C680	69
		*+INSK(I,5)*(TU-TL)+INSK(I,6)*(TU**2-TL**2)/2.	C680	68
0033	506	K(J) = (INSK(I, 2)*(TL-C)+INSK(I, 3)*(TL**2-C**2)/2.	C680	67
	C		C680	66
0032		GO TO 510	C680	65
		*+INSK(I,5)*(H-TL)+INSK(I,6)*(H**2-TL**2)/2.)/(H-C)	C680	64
0031		K(J)=(INSK(I,2)*(TL-C)+INSK(I,3)*(TL**2-C**2)/2	C680	63
0029	505	IF (H. GT. TU) GO TO 506	C680	62
	С		C680	61
0028		GO TO 510	C680	60
0027		K(J) = INSK(I, 2) + INSK(I, 3) * (H+C) / 2.	C680	59
0025		IF (H. GT. TL) GO TO 505	C680	58
0023		IF (C.GT.TL) GO TO 507	C680	57
	C		C680	56
0022		TU=INSK(1,7)	C680	55

# 🕼 C 680

	C LAST REVISION MADE ON 11/13/81	C680	1
	C PROGRAM SELECT	C680	2
	C	C680	3
0001	SUBROUTINE SELECT (DIAPIP, NLAYER, THK, DIAIN, DIAOUT, ERR, INSIZ)	C680	4
	C	C680	5
	C THIS ROUTINE USES AS INPUT THE NOMINAL IRON PIPE SIZE AND THE	C680	6
	C THICKNESSES OF EACH LAYER OF INSULATION TO DETERMINE THE INSIDE	C680	7
	C DIAMETER AND THE OUTSIDE DIAMETER OF EACH LAYER. TABLE 3 IN ASTM	C680	8
	C C 585-76 IS USED FOR THE SPECIFIED DIMENSIONS.	C680	9
	C	C680	-
	C VARIABLES USED IN THIS ROUTINE-	C680	11
	C	C680	12
	C DIAIN(I) = INSIDE DIAMETER OF INSULATION LAYER I, INCHES.	C680	13
	C NOTE THAT DIAIN(1)=THE ACTUAL OUTSIDE DIAMETER	C680	14
	C OF THE SERVICE PIPE CALLED FOR BY DIAPIP, AND		
	C THAT DIAIN(I)=DIAOUT(I-1) FOR I>1.	C680	
	C DIAOUT(I) = OUTSIDE DIAMETER OF INSULATION LAYER I, INCHES.	C680	
	C DIAPIP = NOMINAL IRON PIPE SIZE OF THE PIPE IN SERVICE.	C680	18
	C ERR = ERROR SIGNAL RETURNED TO THE MAINLINE PROGRAM F	ORCARO	19
	C AN ILLEGAL ENTRY IN THE THICKNESS SCHEDULE.	C680	
	C I = INDEX VARIABLE.	C680	
	C INSIZ(I) = NOMINAL INSULATION SIZE, INCHES.	C680	
	C K = INDEX VARIABLE.	C680	
	C NLAYER = NUMBER OF LAYERS OF INSULATION (1 TO 7).	C680	
	C PIPE(1,1) = NOMINAL IRON PIPE SIZE	C680	
	C PIPE(1, 2) = ACTUAL OUTSIDE DIAMETER OF PIPE, INCHES.	C680	
	C PIPE(I, J) = OUTSIDE DIAMETER OF INSULATION, INCHES.	C680	
	C THK(I) = NOMINAL THICKNESS OF INSULATION LAYER I, INCHES	C680	28
	C (1.0 TO 4.0 BY 0.5 INCH INCREMENTS, )	C680	
	C	C680	
0002	DIMENSION PIPE(19,9), THK(7), DIAIN(8), DIAOUT(7)	C680	31
0003	REAL INSIZ(7)	C680	32
	C	C680	33
	C TABLE 3, ASTM C 585-76, ROWS AND COLUMNS INTERCHANGED TO	C680	34
	COMPLY WITH FORTRAN ARRAY GENERATION RULES:	C680	35
	C	C680	36
0004	DATA PIPE/0. 5, 0. 75, 1. 0, 1. 25, 1. 5, 2. 0, 2. 5, 3. 0, 3. 5, 4. 0, 4. 5, 5. 0, 6. 0,	C680	37
	*7. 0, 8. 0, 9. 0, 10. 0, 11. 0, 12. 0,	C680	38
	C	C680	39
	*0. 840, 1. 050, 1. 315, 1. 660, 1. 900, 2. 375, 2. 875, 3. 500, 4. 000, 4. 500, 5. 00	0, C680	40
	<b>*</b> 5, 563, 6, 625, 7, 625, 8, 625, 9, 625, 10, 75, 11, 75, 12, 75,	C680	41
	C	C680	
	*2. 875, 2. 875, 3. 500, 3. 500, 4. 000, 4. 500, 5. 000, 5. 563, 6. 625, 6. 625, 7. 62	5, C680	43
	*7. 625/8. 625/0. 000/0. 000/0. 000/0. 000/0. 000/0. 000/0. 000/	C680	44
	C	C680	45
	*4. 000, 4. 000, 4. 500, 5. 000, 5. 000, 5. 563, 6. 625, 6. 625, 7. 625, 7. 625, 8. 625	5, C680	<b>4</b> 6
	*8. 625, 9. 625, 10. 75, 11. 75, 12. 75, 14. 00, 15. 00, 16. 00,	C680	47
		C680	<b>4</b> 8
	*5. 000, 5. 000, 5. 563, 5. 563, 6. 625, 6. 625, 7. 625, 7. 625, 8. 625, 8. 625, 9. 625		49
	*9. 625, 10. 75, 11. 75, 12. 75, 14. 00, 15. 00, 16. 00, 17. 00,	0863	50
	C	C680	51
	*6. 625, 6. 625, 6. 625, 6. 625, 7. 625, 7. 625, 8. 625, 8. 625, 9. 625, 9. 625, 10. 7		52
	*10, 75, 11, 75, 12, 75, 14, 00, 15, 00, 16, 00, 17, 00, 18, 00,	C680	53
	C	C680	54
	FIG. 9 (continued)		

		*7. 625, 7. 625, 7. 625, 7. 625, 8. 625, 8. 625, 9. 625, 9. 625, 10. 75, 10. 75, 11. 7		
	-	*11, 75, 12, 75, 14, 00, 15, 00, 16, 00, 17, 00, 18, 00, 19, 00,	C680	
	C		C680	
		*8. 625, 8. 625, 8. 625, 8. 625, 9. 625, 9. 625, 10. 75, 10. 75, 11. 75, 11. 75, 12. 7		
	~	*12, 75, 14, 00, 15, 00, 16, 00, 17, 00, 18, 00, 19, 00, 20, 00,	C680	
	C		C680	
		*9. 625; 9. 625; 9. 625; 9. 625; 10. 75; 10. 75; 11. 75; 11. 75; 12. 75; 12. 75; 14. 0		
	-	*14. 00, 15. 00, 16. 00, 17. 00, 18. 00, 19. 00, 20. 00, 21. 00/	C680	
	C		C680	
	C		C680	
0005		ERR=0	C680	
0006		INSIZ(1)=DIAPIP	C680	
0007		IF (DIAPIP, LT. 14.) GOTO 300	C680	
0009		DIAIN(1)=DIAPIP	C680	
0010	•	GO TO 303	C680	
	C	D0 004 1-4 40	C680	
0011	300	DO 301 I=1,19	C680	
0012		IF (DIAPIP.EQ.PIPE(I,1)) GOTO 302	C680	
0014		CONTINUE	C680	
004E	C		C680	
0015	302	DIAIN(1)=PIPE(1,2)	C680	
	C		C680	
0016	303	DO 309 I=1, NLAYER	C680	
0017		IF (DIAIN(I), GE 14.) GOTO 304	C680	
0019		IF (DIAIN(I), LT. 7.) GOTO 305	C680	
0021		IF (THK(I), GT. 1.) GOTO 305	C680	
0023		ERR=1	C680	
0024		GOTO 310	C680	
	C	DIANIN'I L. DIATMUTA	C680	
0025	304	DIAQUT(I)=DIAIN(I)+2. *THK(I)	C680	
0026		INSIZ(I)=DIAIN(I)	C680	
0027	~	GO TO 308	C680	
0020	C	D0 20/ K-1 10	0860	
0028	305	D0 306 K=1,19	C680	
0029 0031	201	IF(DIAIN(I), EQ. PIPE(K, 2)) GOTO 307	C680	
0031	306 C	CONTINUE	0680	
0032	307	J=2*THK(I)+1	C680	
0032	307	J=2*Trac(1)*1 DIAOUT(I)=PIPE(K, J)	C680 C680	
0034		INSIZ(I)=PIPE(K, 1)		
0004	с	11012117-F1FEIN/1/	C680 C680	
0035	308	DIAIN(I+1)=DIAQUT(I)	C680	
0035	308	CONTINUE	C680	
w.30	309 C	CONTINUL.	0680	
0037	310	RETURN	C680	78 99
0038	010	END	C680	
0000		FIG. 9 (continued)	0000	100

Thermal Conductivity vs. Mean Temperature 0.80 0.70 Mean Temp. 20 75 131 174 297 392 Thermal Conductivity 0.209 0.233 0.259 0.285 0.382 0.455 0.60 Thermal Conductivity, Btu-in./hr-ft²-deg F 0.50 0.40 0.30  $\frac{\text{Regression Line}}{\ln k = a + bt}$ a = -1.620.20 b = 0.00213 0.10 0 100 200 300 400 500 Mean Temperature, degrees F



FIG. 12 Sample Data—Type 3 Material

FIG. 10 Sample Data—Type 2 Material



FIG. 11 Sample Data—Type 1 Material

🚯 C 680

```
RUN EQUIP2
>
 ASTM C-680 RECOMMENDED PRACTICE FOR THE DETERMINATION OF HEAT FLOW AND SURFACE
TEMPERATURES OF MULTIPLE-LAYERED EQUIPMENT INSULATION SYSTEM FOR AN INTERACTIVE
INPUT/OUTPUT COMPUTER TERMINAL.
ENTER TITLE - 60 CHARACTER LIMIT
SAMPLE PROBLEM 1
ENTER DATE - ANY FORMAT
NOVEMBER 24,1981
ENTER AMBIENT TEMPERATURE, F
10
TYPICAL SURFACE COEFFICIENT IS 1.45.
IF COEFFICIENT IS TO BE CALCULATED FROM EMITTANCE AND WIND SPEED ENTER O
OTHERWISE ENTER SURFACE COEFFICIENT TO BE USED.
DIMERWISE ENTER SURFACE COLLECTION AND T IS THE MEAN TEMPERATURE EQUATIONS MAY BE USED.

6.00

UP TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS MAY BE USED.

THEY ARE OF 3 TYPES. THE TYPES ARE:

MATERIAL CODE 1 - K = A + B * T + C * T**2

MATERIAL CODE 2 - K = EXP( A + B * T )

MATERIAL CODE 3 - K = A1 + B1 * T, FOR T < TL

K = A2 + B2 * T, FOR TL < T < TU

K = A3 + B3 * T, FOR TU < T
WHERE A, B, AND C ARE THE COEFFICIENTS OF THE EQUATIONS, AND T IS THE MEAN
TEMPERATURE.
ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULATION NO. 1
ENTER A, B FOR MATERIAL CODE 2.
-1.62,0.00213
ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULATION NO. 2
0
ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7
ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THE AMBIENT SURFACE
ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NO. 1
1,4.0
ENTER EQUIPMENT SERVICE TEMPERATURE, F
450
                                          FIG. 13 Sample Problem 1
```

(f)) C 680



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED EQUIPMENT PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 2 MATERIAL: K= EXP(-1.6200 + 0.213E-02 * T)

	ENT SERVICE I TEMPERATUR	TEMPERATURE, I RE, F	F 450. 10.			
SURFACE	e coef. Usei	), btu/hr. sf. f	6. 00			
Total Heat Flux, BTU/HR. SF. ,			36. 5			
layer No.	MATERIAL NU.	INSULATION THICKNESS	CONDUCTIVITY, BTU, IN/HR, SF, F	resistance, Hr. SF. F/BTU	TEMPERA INSIDE	ATURE, F OUTSIDE
1	1	4.00	0. 337	11. 88	450, 00	16. 09

```
DO YOU WANT TO RE-RUN THIS PROGRAM WITH A DIFFERENT THICKNESS,
INSULATION OR LAYER SCHEDULE.
ENTER 0 FOR NO
1 FOR YES
1
ENTER NUMBER OF INSULATION LAYERS - MAXIMUM OF 7
1
ENTER LAYER INFORMATION FROM THE EQUIPMENT SURFACE TO THE AMBIENT SURFACE
ENTER INSULATION NO. AND INSULATION THICKNESS FOR LAYER NO. 1
1,4.5
ENTER EQUIPMENT SERVICE TEMPERATURE, F
450
FIG. 13 (continued)
```



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED EQUIPMENT PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 2 MATERIAL: K= EXP(-1.6200 + 0.213E-02 * T)

EQUIPMENT AMBIENT TI		Temperature, 12, f	F 450. 10.			
SURFACE CO	DEF. USED	), BTU/HR, SF, F	6. 00			
TOTAL HEAT	T FLUX,BT	U/HR. SF.	32.5			
layer Mi Ng.	ATERIAL NŪ.	INSULATION THICKNESS	CONDUCTIVITY, BTU. IN/HR. SF. F	resistance, Hr. Sf. F/Btu	TEMPER/ INSIDE	ATURE, F OUTSIDE
1	1	4, 50	0, 337	13. 37	450.00	15. 42

DO YOU WANT TO RE-RUN THIS FROGRAM WITH A DIFFERENT THICKNESS, INSULATION OR LAYER SCHEDULE. ENTER 0 FOR NO 1 FOR YES

0 >

```
∰ C 680
```

```
RUN PIPE2
>
ASTM C-680 RECOMMENDED PRACTICE FOR THE DETERMINATION OF HEAT FLOW AND SURFACE
TEMPERATURES OF MULTIPLE-LAYERED INSULATED PIPE FOR AN INTERACTIVE INPUT/OUTPUT
COMPUTER TERMINAL.
ENTER TITLE - 60 CHARACTER LIMIT
SAMPLE PROBLEM 2
ENTER DATE - ANY FORMAT
NOVEMBER 24,1981
ENTER AMBIENT TEMPERATURE, F
80
TYPICAL SURFACE COEFFICIENT IS 1.65.
IF COEFFICIENT IS TO BE CALCULATED FROM EMITTANCE AND WIND SPEED ENTER O
OTHERWISE ENTER SURFACE COEFFICIENT TO BE USED.
1.76
UF TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS MAY BE USED.
THEY ARE OF 3 TYPES. THE TYPES ARE:
MATERIAL CODE 1 - K = A + B * T + C * T**2
MATERIAL CODE 2 - K = EXP( A + B * T )
            \begin{array}{rcl} \mbox{MATERIAL CODE 2} & \mbox{K} & = & \mbox{A1} & \mbox{K} & \mbox{MATERIAL CODE 3} & \mbox{K} & = & \mbox{A1} & \mbox{B1} & \mbox{T} & \mbox{FOR T} & \mbox{T} & \mb
WHERE A, B, AND C ARE THE COEFFICIENTS OF THE EQUATIONS, AND T IS THE MEAN
TEMPERATURE
ENTER MATERIAL TYPE CODE (OR O IF ALL ENTERED) FOR INSULATION NO. 1
ENTER A, B, C FOR MATERIAL TYPE 1.
0.400,0.105E-03,0.286E-06
ENTER MATERIAL TYPE CODE (OR O IF ALL ENTERED) FOR INSULATION NO. 2
0
ENTER NUMBER OF INSULATION LAYERS - MAXIMUM IS 7
INSULATION THICKNESSES OF 1 INCH TO 4 INCHES CAN BE ENTERED IN INCREMENTS OF 0.5
   INCH.
ENTER LAYER INFORMATION FROM THE PIPE SURFACE TO THE AMBIENT SURFACE
ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 1
1,2.0
ENTER NOMINAL FIFE SIZE FER ASTM C-585
3.0
ENTER PIPE SERVICE TEMPERATURE, F
800
```

```
FIG. 14 Sample Problem 2
```



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

	IRON PIPE IPE DIAMET		-	1. 00 500		
	VICE TEMPE TEMPERATUR		-	00. 30.		
SURFACE	COEFFICIEN	T USED, BTU/H	R. SF. F 1	. 76		
total He	AT FLUX, BT	IJ∕H <b>R. LF</b> .,	23	0. 5		
layêr Nû.	MATERIAL NO.	INSULATION SIZE	CONDUCTIVITY, BTU, IN/HR, SF, F	RESISTANCE. HR. SF. F/BTU	TEMPERA INSIDE	TURE, F OUTSIDE
1	1	3.00 X 2.00	0. 524	5.67	800. 00	145. 60

DO YOU WANT TO RE-RUN THIS PROGRAM WITH A DIFFERENT THICKNESS, INSULATION, OR LAYER SCHEDULE? ENTER O FOR NO 1 FOR YES. INSULATION THICKNESSES OF 1 INCH TO 4 INCHES CAN BE ENTERED IN INCREMENTS OF 0.3 INCH. ENTER LAYER INFORMATION FROM THE PIPE SURFACE TO THE AMBIENT SURFACE ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 1 1,2.5 ENTER NOMINAL PIPE SIZE PER ASTM C-585 3.0 ENTER PIPE SERVICE TEMPERATURE, F 800



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

	. IRON PIPE PIPE DIAME			3. 00 500		
	RVICE TEMPI T TEMPERATU		-	800. 80.		
SURFACE	COEFFICIE	NT USED, BTU/H	R. SF. F 1	76		
TOTAL H	IEAT FLUX, B	TU/HR. L.F. /	20	02.6		
LAYER NO.	MATERIAL NO.	INSULATION SIZE	CONDUCTIVITY, BTU. IN/HR. SF. F	RESISTANCE, HR. SF. F/BTU	TEMPERA INSIDE	ATURE, F OUTSIDE
1	1	3. 00 X 2. 50	0. 522	7. 46	800. 00	130. 97

DO YOU WANT TO RE-RUN THIS PROGRAM WITH A DIFFERENT THICKNESS, INSULATION, OR LAYER SCHEDULE? ENTER 0 FOR NO 1 FOR YES. 1 ENTER NUMBER OF INSULATION LAYERS - MAXIMUM IS 7 1 INSULATION THICKNESSES OF 1 INCH TO 4 INCHES CAN BE ENTERED IN INCREMENTS OF 0 INCH. ENTER LAYER INFORMATION FROM THE PIPE SURFACE TO THE AMBIENT SURFACE ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 1 1,3.0 ENTER NOMINAL PIPE SIZE PER ASTM C-585 3.0 ENTER PIPE SERVICE TEMPERATURE, F 800



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

NOMINAL IRON PIPE ACTUAL PIPE DIAME	•••••		3.00 500		
PIPE SERVICE TEMP AMBIENT TEMPERATU			300. 80.		
EMITTANCE WIND SPEED, MPH SURFACE COEFFICIE	NT USED, BTU/H		), 90 0, 0 ., 76		
TOTAL HEAT FLUX, B	TU/HR. L.F. ,	15	2.7		
LAYER MATERIAL NO. NO.	INSULATION SIZE	, CONDUCTIVITY, BTU, IN/HR, SF, F		TEMPERA INSIDE	TURE, F OUTSIDE
1 1	3.00 X 3.00	0. 520	9. 36	300, 00	121. 24

DO YOU WANT TO RE-RUN THIS PROGRAM WITH A DIFFERENT THICKNESS, INSULATION, OR LAYER SCHEDULE? ENTER O FOR NO 1 FOR YES. 1 ENTER NUMBER OF INSULATION LAYERS - MAXIMUM IS 7 1 INSULATION THICKNESSES OF 1 INCH TO 4 INCHES CAN BE ENTERED IN INCREMENTS OF 0.5 INCH. ENTER LAYER INFORMATION FROM THE PIPE SURFACE TO THE AMBIENT SURFACE ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 1 1,3.5 ENTER NOMINAL PIPE SIZE PER ASTM C-585 3.0 ENTER PIPE SERVICE TEMPERATURE, F 800

```
∰ C 680
```

```
RUN PIPE2 >
ASTM C-680 RECOMMENDED PRACTICE FOR THE DETERMINATION OF HEAT FLOW AND SURFACE
TEMPERATURES OF MULTIPLE-LAYERED INSULATED PIPE FOR AN INTERACTIVE INPUT/OUTPUT
COMPUTER TERMINAL.
ENTER TITLE - 60 CHARACTER LIMIT
SAMPLE PROBLEM 3
ENTER DATE - ANY FORMAT
NOVEMBER 24,1981
ENTER AMBIENT TEMPERATURE, F
80
TYPICAL SURFACE COEFFICIENT IS 1.65.
IF COEFFICIENT IS TO BE CALCULATED FROM EMITTANCE AND WIND SPEED ENTER O
OTHERWISE ENTER SURFACE COEFFICIENT TO BE USED.
TYPICAL EMITTANCE IS 0.9.
TYPICAL WIND SPEED IS 0 MPH.
ENTER EMITTANCE, WIND SPEED, AND PIPE ORIENTATION CODE:
     1 FOR VERTICAL FIFE RUN
      2 FOR HORIZONTAL PIPE RUN
0.9,0.0,2
SIGNIFICANT SYSTEM DIMENSION (VERTICAL HEIGHT, AVERAGE HORIZONTAL DIMENSION,
OR INSULATION SURFACE DIAMETER); IF UNKNOWN ENTER 0.
0.75
UP TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS MAY BE USED.
UP TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS MAY BE USED.

THEY ARE OF 3. TYPES, THE TYPES ARE:

MATERIAL CODE 1 - K = A + B * T + C * T**2

MATERIAL CODE 2 - K = EXP( A + B * T )

MATERIAL CODE 3 - K = A1 + B1 * T, FOR T < TL

K = A2 + B2 * T, FOR TL < T < TU

K = A3 + B3 * T, FOR TU < T

WHERE A, B, AND C ARE THE COEFFICIENTS OF THE EQUATIONS, AND T IS THE MEAN

TEMPERATURE.

ENTER MATERIAL TYPE CODE (OF A LE ALL ENTERED) FOR INSULATION NO. 1
ENTER MATERIAL TYPE CODE (OR O IF ALL ENTERED) FOR INSULATION NO. 1
ENTER A, B, C FOR MATERIAL TYPE 1.
0.400,0.105E-03,0.286E-06
ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULATION NO. 2
ENTER NUMBER OF INSULATION LAYERS - MAXIMUM IS 7
INSULATION THICKNESSES OF 1 INCH TO 4 INCHES CAN BE ENTERED IN INCREMENTS OF 0.5
  INCH.
ENTER LAYER INFORMATION FROM THE FIFE SURFACE TO THE AMBIENT SURFACE
ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 1
1,2.0
ENTER NOMINAL FIFE SIZE FER ASTM C-385
3.0
ENTER PIPE SERVICE TEMPERATURE, F
800
```

FIG. 15 Sample Problem 3



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

NOMINAL IRON PIPE SIZE, IN. ACTUAL PIPE DIAMETER, IN.				3. 00 500		
PIPE SERVICE TEMPERATURE, F AMBIENT TEMPERATURE, F			-	300. 80.		
	PEED, MPH	NT USED, BTU/H		), 90 0, 0 1, 92		
TOTAL HEAT FLUX, BTU/HR. LF. ,			23	31. 9		
layer No.	Material. No.	INSULATION SIZE	CONDUCTIVITY, BTU. IN/HR. SF. F	resistance, Hr. SF, F/BTU	TEMPER/ INSIDE	ATURE, F OUTSIDE
1	1	3.00 X 2.00	0. 523	5. 68	800.00	140. 47



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-690

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

NOMINAL IRON PIPE ACTUAL PIPE DIAME		-	. 00 500		
PIPE SERVICE TEMP AMBIENT TEMPERATU		-	00. 80.		
emittance Wind Speed, MPH Surface Coefficie	nt used, btu/hi		. 90 0. 0 . 33		
TOTAL HEAT FLUX, B	TU/HR. LF. ,	20	13. 0		
Layer Material. No. No.	INSULATIÓN SIZE	CONDUCTIVITY, BTU. IN/HR. SF. F	RESISTANCE, HR. SF. F/BTU	TEMPER/ INSIDE	ATURE, F OUTSIDE
1 1	3.00 X 2.50	0, 521	7.46	300, 00	129, 17



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

NOMINAL IRON PIPE SIZE, IN. ACTUAL PIPE DIAMETER, IN.				. 00 500	
PIPE SERVICE TEMPERATURE, F AMBIENT TEMPERATURE, F			-	00. 30.	
SURFACE	COEFFICIEN	IT USED, BTU/H	RISF.F 1	. 76	
total H	ÆAT FLUX, BT	U/HR.LF.,	18	27	
LAYER NO.	MATERIAL NO.	INSULATION SIZE	CONDUCTIVITY, BTU, IN/HR, SF, F	Resistance, Hr. SF. F/BTU	TEMPERATURE F INSIDE OUTSIDE
1	1	3, 00 X 3, 00	0. 520	9, 36	800. 00 121. 20

....

DO YOU WANT TO RE-RUN THIS FROGRAM WITH A DIFFERENT THICKNESS, INSULATION, OR LAYER SCHEDULE? ENTER O FOR NO 1 FOR YES.

**0** >



NOVEMBER 24, 1981

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

	. IRON PIPE PIPE DIAMET			3. 00 500		
PIPE SERVICE TEMPERATURE, F AMBIENT TEMPERATURE, F			-	800. 80.		
	PEED, MPH	IT USED, BTU/H	-	), 90 0, 0 ., 70		
TOTAL	EAT FLUX, BI	U/HR.LF.,	16	6. 0		
Layer NO.	Material NO.	INSULATION SIZE	CONDUCTIVITY, BTU. IN/HR SF. F	resistance, Hr. Sf. F/BTJ	TEMPERA INSIDE	ATURE, F OUTSIDE
1	1	3. 00 X 3. 50	0. 519	11. 62	300, 00	*114. 77

DO YOU WANT TO RE-RUN THIS PROGRAM WITH A DIFFERENT THICKNESS, INSULATION, OR LAYER SCHEDULE? ENTER O FOR NO 1 FOR YES.

0 >

•

```
🕼 C 680
```

```
RUN PIPE2
\geq
 ASTM C-680 RECOMMENDED PRACTICE FOR THE DETERMINATION OF HEAT FLOW AND SURFACE
TEMPERATURES OF MULTIPLE-LAYERED INSULATED FIPE FOR AN INTERACTIVE INFUT/OUTPUT
COMPUTER TERMINAL.
ENTER TITLE - 60 CHARACTER LIMIT
SAMPLE PROBLEM 4
ENTER DATE - ANY FORMAT
NOVEMBER 24,1981
ENTER AMBIENT TEMPERATURE, F
-100.0
TYPICAL SURFACE COEFFICIENT IS 1.65.
OTHERWISE ENTER SURFACE COEFFICIENT TO BE USED.
TYPICAL EMITTANCE IS 0.9.
TYPICAL WIND SPEED IS 0 MPH.
ENTER EMITTANCE, WIND SPEED, AND PIPE ORIENTATION CODE:
1 FOR VERTICAL FIPE RUN
     2 FOR HORIZONTAL PIPE RUN
0.9,5.0,2
SIGNIFICANT SYSTEM DIMENSION (VERTICAL HEIGHT, AVERAGE HORIZONTAL DIMENSION, OR INSULATION SURFACE DIAMETER); IF UNKNOWN ENTER 0.
0
UP TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS MAY BE USED.
UP TO 10 THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS MAY BE USED.

THEY ARE OF 3 TYPES. THE TYPES ARE:

MATERIAL CODE 1 - K = A + B * T + C * T**2

MATERIAL CODE 2 - K = EXP( A + B * T )

MATERIAL CODE 3 - K = A1 + B1 * T, FOR T < TL

K = A2 + B2 * T, FOR TL < T < TU

K = A3 + B3 * T, FOR TU < T

WHERE A, B, AND C ARE THE COEFFICIENTS OF THE EQUATIONS, AND T IS THE MEAN
TEMPERATURE.
ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULATION NO. 1
ENTER A, B, C FOR MATERIAL TYPE 1.
0.400,0.105E-03,0.286E-06
ENTER MATERIAL TYPE CODE (OR O IF ALL ENTERED) FOR INSULATION NO. 2
ENTER A, B FOR MATERIAL CODE 2.
-1.62,2.12E-03
ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULATION NO. 3
FOR MATERIAL TYPE 3:
ENTER A1, B1, TL
0.201,0.00039,-25.0
ENTER A2, B2, TU
0.182,-0.00038,50.0
ENTER A3, B3
0.141,0.00037
ENTER MATERIAL TYPE CODE (OR 0 IF ALL ENTERED) FOR INSULATION NO. 4
                                       FIG. 16 Sample Problem 4
```

# ∰ C 680

```
O
ENTER NUMBER OF INSULATION LAYERS - MAXIMUM IS 7
3
INSULATION THICKNESSES OF 1 INCH TO 4 INCHES CAN BE ENTERED IN INCREMENTS OF 0.5
INCH.
ENTER LAYER INFORMATION FROM THE PIPE SURFACE TO THE AMBIENT SURFACE
ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 1
1,3.0
ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 2
2,2.0
ENTER INSULATION MATERIAL NO. AND INSULATION THICKNESS FOR LAYER NO. 3
3,1.5
ENTER NOMINAL PIPE SIZE PER ASTM C-585
4.0
ENTER PIPE SERVICE TEMPERATURE, F
600
```

```
SAMPLE PROBLEM 4
```

```
NOVEMBER 24, 1981
```

HEAT FLOW AND SURFACE TEMPERATURES OF INSULATED PIPE SYSTEMS PER ASTM C-680

THERMAL CONDUCTIVITY VS. MEAN TEMPERATURE EQUATIONS USED IN THIS ANALYSIS:

TYPE 1 MATERIAL: K= 0.400 + 0.105E-03 * T + 0.286E-06 * T**2

TYPE 2 MATERIAL: K= EXP(-1.6200 + 0.212E-02 + T)

 TYPE 3 MATERIAL:
 K=0.201 + (0.000390) + T
 FOR
 T < -25.0</th>

 K=0.182 + (-0.000380) + T
 FOR -25.0 < T < 50.0</td>
 K=0.141 + (0.000370) + T
 FOR 50.0 < T</td>

NOMINAL IRON PIPE SIZE, IN. ACTUAL PIPE DIAMETER, IN.				. 00 500		
PIPE SERVICE TEMPERATURE, F AMBIENT TEMPERATURE, F				00. 00.		
EMITTANCE 0.90 WIND SPEED, MPH 5.0 SURFACE COEFFICIENT USED, BTU/HR. SF. F 1.57						
TOTAL H	ÆAT FLUX,B	TU/HR. LF. ,	9	3. 2		
layer No.	MATERIAL NO.	INSULATION SIZE	CONDUCTIVITY, BTU. IN/HR. SF. F			TURE, F OUTSIDE
1 2	1 2	4.00 X 3.00 10.00 X 2.00	0.506 0.302	15. 48 9. 93		97.41
3	3	15. 00 X 1. 50 FIG. 16 (	0. 176 (continued)	9, 35	97. 41	-87.42

### **APPENDIX**

#### (Nonmandatory Information)

## **X1. APPLICATION OF PRACTICE C 680 TO FIELD MEASUREMENTS**

X1.1 This appendix has been included to provide a more complete discussion of the precision and bias expected when using this practice in the analysis of operating systems. While much of the discussion below is relevant to the practice, the errors associated with its application to operating systems is beyond the immediate scope of this task group. Portions of this discussion, however, were used in developing the Precision and Bias statements included in Section 11.

X1.2 This appendix will consider precision and bias as it relates to the comparison between the calculated results of the C 680 analysis and measurements on operating systems. Some of the discussion here may also be found in Section 11;

however, items are expanded here to include analysis of operating systems.

X1.3 Precision:

X1.3.1 The precision of this practice has not yet been demonstrated as described in Specification E 691, but an interlaboratory comparison could be conducted, if necessary, as facilities and schedules permit. Assuming no errors in programming or data entry, and no computer hardware malfunctions, an interlaboratory comparison should yield the theoretical precision presented in X1.3.2.

X1.3.2 The theoretical precision of this practice is a function of the computer equipment used to generate the calculated results. Typically, seven significant digits are resident in the computer for calculations. The use of "Double Precision" can expand the number of digits to sixteen. However, for the intended purpose of this practice, standard levels of precision are adequate. The effect of computer resolution on accuracy is only significant if the level of precision is higher than seven digits. Computers in use today are accurate in that they will reproduce the calculation results to the resolution required if identical input data is used.

X1.3.2.1 The formatting of output results from this practice has been structured to provide a resolution of 0.1 % for the typically expected levels of heat flux, and within  $0.1^{\circ}F$  (0.05°C) for surface temperatures.

X1.3.2.2 A systematic precision error is possible due to the choices of the equations and constants for convective and radiative heat transfer used in the program. The interlaboratory comparison of X1.3.3 indicates that this error is usually within the bounds expected in *in situ* heat flow calculations.

X1.3.3 Precision of Surface Convection Equations:

X1.3.3.1 Many empirically derived equation sets exist for the solution of convective heat transfer from surfaces of various shapes in various environments. The Rice Heilman adjustments (7) to the Langmuir's equations (6) is one commonly used equation set. If two different equations sets are chosen and a comparison is made using identical input data, the calculated results are never identical, not even when the conditions for application of the equations appear to be identical. For example, if equations designed for vertical surfaces in turbulent cross flow are compared, results from this comparison could be used to help predict the effect of the equation sets on overall calculation precision.

X1.3.3.2 The systematic precision of the surface coefficient equation set used in this practice has had at least one thorough intralaboratory evaluation (9). When the surface convective coefficient equation (see Eq 30) of this practice was compared to another surface equation set by computer modeling of identical conditions, the resultant surface coefficients for the 240 typical data sets varied, in general, less than 10 %. One extreme case (for flat surfaces) showed variations up to 30 %. Other observers have recorded larger variations (in less rigorous studies) when additional equation sets have been compared. Unfortunately, there is no standard for comparison, since all practical surface coefficient equations are empirically derived. Eq 30 is widely used and accepted and will continue to be recommended until evidence suggests otherwise.

X1.3.4 Precision of Radiation Surface Equations:

X1.3.4.1 The Stefen-Boltzman equation for radiant transfer is widely applied, but still debated. In particular, there remains some concern as to whether the exponents of temperature are exactly 4.0 in all cases. A small error in these exponents could cause a larger error in calculated radiant heat transfer. The exactness of the coefficient 4 is well-founded in both physical and quantum physical theory and is therefore used here.

X1.3.4.2 On the other hand, the ability to measure and preserve a known emittance is quite difficult. Furthermore, though the assumptions of an emittance of 1.0 for the surroundings and a "sink" temperature equal to ambient air temperature is often approximately correct in a laboratory environment,

operating systems in an industrial environment often diverge widely from these assumptions. The effect of using 0.95 for the emittance of the surroundings rather than the 1.00 assumed in the previous version of this practice was also investigated by the task group (9). Intralaboratory analysis of the effect of assuming a surrounding effective emittance of 0.95 versus 1.00 indicates a variation of 5 % in the radiation surface coefficient when the object emittance is 1.00. As the object emittance is reduced to 0.05, the difference in the surface coefficient becomes negligible. These differences would be greater if the surrounding effective emittance is less than 0.95.

X1.3.5 Precision of Input Data:

X1.3.5.1 The heat transfer equations used in the computer program of this practice imply possible sources of significant errors in the data collection process, as detailed later in this appendix.

NOTE X1.1—Although data collection is not within the scope of this practice, the results of this practice are highly dependent on accurate input data. For this reason, a discussion of the data collection process is included here.

X1.3.5.2 A rigorous demonstration of the impact of errors associated with the data collection phase of an operating system's analysis using C680 is difficult without a parametric sensitivity study on the method. Since it is beyond the intent of this discussion to conduct a parametric study for all possible cases, X1.3.5.3-X1.3.5.7 discuss in general terms the potential for such errors. It remains the responsibility of users to conduct their own investigation into the impact of the analysis assumptions particular to their own situations.

X1.3.5.3 *Conductivity Data*—The accuracy and applicability of the thermal conductivity data are derived from several factors. The first is the accuracy of the test method used to generate the data. Since Test Methods C 177, C 335, and C 518 are usually used to supply test data, the results reported for these tests should contain some statement of test data accuracy. The remaining factors influencing the accuracy are the inherent variability of the product and the variability of the insulation installation practice. If the product variability is large or the installation is poor, or both, serious differences might exist between the measured performance and the performance predicted by this method.

X1.3.5.4 Surface Temperature Data—There are many techniques for collecting surface temperatures from operating systems. Most of these methods assuredly produce some error in the measurement due to the influence of the measurement on the operating condition of the system. Additionally, the intended use of the data is important to the method of surface temperature data collection. Most users desire data that is representative of some significant area of the surface. Since surface temperatures frequently vary significantly across operating surfaces, single-point temperature measurements usually lead to errors. Sometimes very large errors occur when the data is used to represent some integral area of the surface. Some users have addressed this problem through various means of determining average surface temperatures. Such techniques will often greatly improve the accuracy of results used to represent average heat flows. A potential for error still exists, however, when theory is precisely applied. This practice applies only to areas accurately represented by the average point measurements, primarily because the radiation and convection equations are non-linear and do not respond correctly when the data is averaged. The following example is included to illustrate this point:

Assume the system under analysis is a steam pipe. The pipe is jacketed uniformly, but one-half of its length is poorly insulated, while the second half has an excellent insulation under the jacket. The surface temperature of the good half is measured at 550°F. The temperature of the other half is measured at 660°F. The average of the two temperatures is  $610^{\circ}$ F. The surface emittance is 0.92, and ambient temperature is 70°F. Solving for the surface radiative heat loss rates for each half and for the average yields the following:

The average radiative heat loss rate corresponding to a  $610^{\circ}$ F temperature is 93.9 Btu/ft²/h.

The "averaged" radiative heat loss obtained by calculating the heat loss for the individual halves, summing the total and dividing by the area, yields an "averaged" heat loss of 102.7 Btu/hr/ft². The error in assuming the averaged surface temperature when applied to the radiative heat loss for this case is 8.6 %.

It is obvious from this example that analysis by the methods described in this practice should be performed only on areas which are thermally homogeneous. For areas in which the temperature differences are small, the results obtained using C680 will be within acceptable error bounds. For large systems or systems with significant temperature variations, total area should be subdivided into regions of nearly uniform temperature difference so that analysis may be performed on each subregion.

X1.3.5.5 Ambient Temperature Variations-In the standard analysis by the methods described in this practice, the temperature of the radiant surroundings is taken to be equal to the ambient air temperature (for the designer making comparative studies, this is a workable assumption). On the other hand, this assumption can cause significant errors when applied to equipment in an industrial environment, where the surroundings may contain objects at much different temperatures than the surrounding air. Even the natural outdoor environment does not conform well to the assumption of air temperatures when the solar or night sky radiation is considered. When this practice is used in conjunction with in situ measurements of surface temperatures, as would be the case in an audit survey, extreme care must be observed to record the environmental conditions at the time of the measurements. While the computer program supplied in this practice does not account for these differences, modifications to the program may be made easily to separate the convective ambient temperature from the mean radiative environmental temperature seen by the surface. The key in this application is the evaluation of the magnitude of this mean radiant temperature. The mechanism for this evaluation is beyond the scope of this practice. A discussion of the mean radiant temperature concept is included in the ASHRAE Handbook of Fundamentals (2).

X1.3.5.6 *Emittance Data*—Normally, the emittance values used in a C680 analysis account only for the emittance of the subject of the analysis. The subject is assumed to be completely

surrounded by an environment which has an assigned emittance of 0.95. Although this assumption may be valid for most cases, the effective emittance used in the calculation can be modified to account for different values of effective emittance. If this assumption is a concern, using the following formula for the new effective surface emittance will correct for this error:

$$\epsilon_{\text{eff}} = \frac{A_A}{(1 - \epsilon_A)/\epsilon_A A_A + 1/A_A F_{AB} + (1 - \epsilon_B)/\epsilon_B A_B} \qquad (X1.1)$$

where:

 $\epsilon_{\text{eff}}$  = effective mean emittance for the two surface combination,

 $\epsilon_A$  = mean emittance of the surface A,

 $F_{AB}$  = view factor for the surface A and the surrounding region B,

 $\epsilon_B$  = mean emittance of the surrounding region *B*,

 $A_A$  = area of region A, and

 $A_B$  = area of region B.

This equation set is described in most heat transfer texts on radiative heat transfer. See Holman (4), p. 305.

X1.3.5.7 Wind Speed— Wind speed, as used in the Langmuir's (6) and Rice Heilman (7) equations, is defined as wind speed measured in the main airstream near the subject surface. Air blowing across real objects often follows flow directions and velocities much different from the direction and velocity of the main free stream. The equations used in C680 analysis yield "averaged" results for the entire surface in question. Because of this averaging, portions of the surface will have different surface temperatures and heat flux rates from the average. For this reason, the convective surface coefficient calculation cannot be expected to be accurate at each location on the surface unless the wind velocity measurements are made close to the surface and a separate set of equations are applied that calculate the local surface coefficients.

X1.3.6 Theoretical Estimates of Precision:

X1.3.6.1 When concern exists regarding the accuracy of the input test data, the recommended practice is to repeat the calculation for the range of the uncertainty of the variable. This process yields a range of the desired output variable for a given input variable uncertainty. Several methods exist for evaluating the combined variable effects. Two of the most common are illustrated as follows:

X1.3.6.2 The most conservative method assumes that the errors propagating from the input variable uncertainties are additive for the function. The effect of each of the individual input parameters is combined using Taylor's Theorem, a special case of a Taylor's series expansion (10).

$$\frac{S}{R} = \sum_{i=1}^{n} \left| \frac{\partial R}{\partial x_i} \right| \cdot \Delta x_i$$
(X1.2)

where:

S

 $X_i$ 

= estimate of the probable error of the procedure,

R = result of the procedure,

= *i*th variable of the procedure,

 $\partial R / \partial x_i$  = change in result with respect to a change in the *i*th variable (also, the first derivative of the function with respect to the *i*th variable),

 $\Delta x_i$  = uncertainty in value of variable *i*, and

4聊 C 680

= total number of input variables in the procedure.

X1.3.6.3 For the probable uncertainty of function, R, the most commonly used method is to take the square root of the sum of the squares of the fractional errors. This technique is also known as Pythagorean summation. This relationship is described in the following equation:

$$\frac{S}{R} = \left(\sum_{i=1}^{n} \left( \left( \frac{\partial R}{\partial x_i} \right) \cdot \Delta x_i \right)^2 \right)^{1/2}$$
(X1.3)

X1.3.7 Bias of C680 Analysis:

п

X1.3.7.1 As in the case of the precision, the bias of this standard practice is difficult to define. From the preceding discussion, some bias can result due to the selection of alternative surface coefficient equation sets. If, however, the same equation sets are used for a comparison of two insulation systems to be operated at the same conditions, no bias of results are expected from this method. The bias due to computer differences will be negligible in comparison with other sources of potential error. Likewise, the use of the heat transfer equations in the program implies a source of potential bias errors, unless the user ensures the applicability of the

practice to the system.

X1.3.8 Error Avoidance— The most significant sources of possible error in this practice are in the misapplication of the empirical formulae for surface transfer coefficients, such as using this practice for cases that do not closely fit the thermal and physical model of the equations. Additional errors evolve from the superficial treatment of the data collection process. Several promising techniques to minimize these sources of error are in stages of development. One attempt to address some of the issues has been documented by Mack (11). This technique addresses all of the above issues except the problem of non-standard insulation k values. As the limitations and strengths of in situ measurements and C680 analysis become better understood, they can be incorporated into additional standards of analysis that should be associated with this practice. Until such methods can be standardized, the best assurance of accurate results from this practice is that each application of the practice will be managed by a user who is knowledgeable in heat transfer theory, scientific data collection practices, and the mathematics of programs supplied in this practice.

### REFERENCES

- (1) Arpaci, V. S., *Conduction Heat Transfer*, Addison-Wesley, 1966, p. 129–130.
- (2) ASHRAE Handbook of Fundamentals, Chapter 23, "Design Heat Transmission Coefficients," American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc., Atlanta, GA, Table 1, p. 23.12 and Tables 11 and Tables 12, p. 23.30, 1977.
- (3) Turner, W. C., and Malloy, J. F., *Thermal Insulation Handbook*, McGraw Hill, New York, NY, 1981.
- (4) Holman, J. P., Heat Transfer, McGraw Hill, New York, NY, 1976.
- (5) McAdams, W. H., *Heat Transmission*, McGraw Hill, New York, NY, 1955.
- (6) Turner, W. C., and Malloy, J. F., *Thermal Insulation Handbook*, McGraw Hill, New York, NY, 1981, p. 50.

- (7) Heilman, R. H., "Surface Heat Transmission," ASME Transactions, Vol 1, Part 1, FSP-51-91, 1929, pp. 289–301.
- (8) Schenck, H., *Theories of Engineering Experimentation*, McGraw Hill, New York, NY, 1961.
- (9) Mumaw, J. R., C 680 Revision Update—Surface Coefficient Comparisons, A report to ASTM Subcommittee C16.30, Task Group 5.2, June 24, 1987.
- (10) Beckwith, T. G., Buck, N. L., and Marangoni, R. D., *Mechanical Measurement*, Addison-Wesley, Reading, MA, 1973.
- (11) Mack, R. T., "Energy Loss Profiles," *Proceedings of the Fifth Infrared Information Exchange*, AGEMA, Secaucus, NJ, 1986.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

This standard is copyrighted by ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (http://www.astm.org).